...
首页> 外文期刊>Physical review >Current-induced atomic forces in gated graphene nanoconstrictions
【24h】

Current-induced atomic forces in gated graphene nanoconstrictions

机译:门控石墨烯纳米酮中的电流诱导的原子力

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Electronic current densities can reach extreme values in highly conducting nanostructures where constrictions limit current. For bias voltages on the 1 V scale, the highly nonequilibrium situation can influence the electronic density between atoms, leading to significant interatomic forces of the order of 1 nN. An easy interpretation of the nonequilibrium forces is currently not available, to our knowledge. In this work, we present an ab initio study based on density functional theory of bias-induced atomic forces in gated graphene nanoconstrictions consisting of junctions between graphene electrodes and graphene nanoribbons in the presence of current. We find that current-induced bond forces and bond charges are correlated, while bond forces are not simply correlated to bond currents. We discuss, in particular, how the forces are related to induced charges and the electrostatic potential profile (voltage drop) across the junctions. For long current-carrying junctions we may separate the junction into a part with a voltage drop, and a part without voltage drop. The latter situation can be compared to a nanoribbon in the presence of current using an ideal ballistic velocity-dependent occupation function. This shows how the combination of voltage drop and current give rise to the strongest current-induced forces in nanostructures.
机译:电子电流密度可以达到高导电纳米结构的极端值,其中收缩限制电流。对于1 V标准的偏置电压,高度不足的情况会影响原子之间的电子密度,导致1 nn的显着的内部力。对我们的知识目前无法轻松解释非QuilibriaM部队。在这项工作中,我们介绍了基于偏置石墨烯纳米组织中的偏置的偏置原子力的密度泛函理论的AB初始研究,该纳米烯纳米型在墨烯电极和石墨烯纳米之间的连接处组成。我们发现电流诱导的粘合力和粘合电荷相关,而粘合力不与键电流相关。特别地,我们讨论了力如何与引起电荷和静电潜在的曲线(电压降)相关的力。对于长电流携带的结,我们可以将连接点分离成具有电压降的部分,并且没有电压降的部分。可以使用理想的弹道速度依赖性职业函数在电流存在下与纳米臂进行后一种情况。这表明电压下降和电流的组合如何产生纳米结构中最强的电流引起的力。

著录项

  • 来源
    《Physical review》 |2019年第3期|035415.1-035415.8|共8页
  • 作者单位

    Tech Univ Denmark Ctr Nanostruct Graphene Dept Phys DK-2800 Lyngby Denmark;

    Tech Univ Denmark Dept Appl Math & Comp Sci DK-2800 Lyngby Denmark;

    Tech Univ Denmark Ctr Nanostruct Graphene Dept Phys DK-2800 Lyngby Denmark;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号