首页> 外文期刊>Physical review >Dislocation mechanism based model for Portevin-Le Chatelier like instability in microindentation of dilute alloys
【24h】

Dislocation mechanism based model for Portevin-Le Chatelier like instability in microindentation of dilute alloys

机译:基于Portevin-Le Chatelier位错机理的稀合金微观压痕不稳定性模型

获取原文
获取原文并翻译 | 示例
       

摘要

Although the topic of intermittent plastic flow manifesting as load fluctuations or displacement jumps in nanoindentation (depths less than 100 nm) has attracted considerable attention, the existence of steps on load-indentation (F-z) curves reported in microindentation (depths of several microns) of samples of dilute alloys of varying concentrations and load dates, has received little attention from a modeling point of view. Following our earlier approaches to nanoindentation instabilities and indentation size effect, we develop a minimal dislocation mechanism based model that predicts all the generic experimental features by setting up time-evolution equations for the mobile, the forest, dislocations with solute atmosphere, and the geometrically necessary dislocation densities. The model includes basic dislocation mechanisms common to most plastic deformations, such as dislocation multiplication, storage, and recovery mechanisms. We model the indentation instability as a variant of the standard Portevin-Le Chatelier (PLC) effect seen in the constant strain rate condition by including collective pinning and unpinning of dislocations from solute atmosphere. The instability mechanism is further generalized to include concentration-dependent dislocation-solute interaction to capture both concentration dependence of the indentation instability and strengthening of alloy samples. Based on recent experimental observations that show small misorientation at small depths suggesting limited geometrically necessary dislocation density, we model the growth of the geometrically necessary dislocation density by the number of loops that can be activated under the contact area and the mean strain gradient. The equations are then coupled to the load rate equation. The model predicts all the generic experimental features, such as (a) the stepped nature of the F-z curves, (b) the existence of a critical load and critical indentation depth for the onset of the instability, (c) the decreasing dependence of the maximum indentation depth with concentration of the alloying element, (d) the mean critical indentation depth z* for the onset of the instability increasing with decreasing concentration with a concomitant increase in levels of fluctuations, (e) the decreasing power-law dependence of the critical indentation depth with concentration, (f) the manifestation of intermittent stepped response in a window of load rates, and (g) the magnitude of the load steps scaling linearly with the load. In essence, the basic physical mechanisms responsible for predicting all the experimental results (a)-(g) are the generalization of pinning and unpinning mechanism (of dislocations from solute atmosphere) to include concentration-dependent dislocation-solute interaction and solution hardening of alloy samples with concentration together with the inherent rate-dependent nature of the PLC instability.
机译:尽管间歇性塑性流动的主题表现为纳米压痕(深度小于100 nm)中的载荷波动或位移跳跃,引起了相当大的关注,但微压痕(深度为几微米)中报告的载荷压痕(Fz)曲线上存在台阶。从建模的角度来看,浓度和载荷日期不同的稀合金样品很少受到关注。遵循我们较早的解决纳米压痕不稳定性和压痕尺寸效应的方法,我们开发了一种基于最小位错机制的模型,该模型通过设置移动体,森林,溶质大气的位错以及几何学上必要的时间演化方程来预测所有通用实验特征位错密度。该模型包括大多数塑性变形共有的基本位错机制,例如位错倍增,存储和恢复机制。我们将压痕不稳定性建模为在恒定应变速率条件下看到的标准Portevin-Le Chatelier(PLC)效应的一种变体,方法是包括从溶质气氛中共同钉扎和松脱位错。不稳定性机理进一步概括为包括浓度依赖性位错-溶质相互作用,以捕获压痕不稳定性的浓度依赖性和合金样品的强化。基于最近的实验观察结果,这些观察结果表明在较小深度处的小定向差表明有限的几何必要位错密度,我们通过在接触面积和平均应变梯度下可激活的环数来模拟几何必要位错密度的增长。然后将这些方程式耦合到负载率方程式。该模型可预测所有通用实验特征,例如(a)Fz曲线的阶梯性质,(b)对于不稳定性的发作而言,存在临界载荷和临界压痕深度,(c)逐渐降低的依赖性最大压痕深度随合金元素的浓度而定,(d)不稳定开始时的平均临界压痕深度z *随着浓度的降低而增加,同时波动幅度也随之增加,(e)合金的幂律依赖性降低临界压痕深度与浓度,(f)在负荷率窗口中间歇性阶跃响应的表现,以及(g)负荷阶跃的大小与负荷成线性比例关系。从本质上讲,负责预测所有实验结果(a)-(g)的基本物理机制是钉扎和钉扎机理(溶质大气中的位错)的概括,包括浓度依赖性位错-溶质相互作用和合金的固溶硬化样品的浓度以及PLC不稳定的固有速率依赖性。

著录项

  • 来源
    《Physical review》 |2019年第6期|64102.1-64102.16|共16页
  • 作者

    Ananthakrishna G.; Srikanth K.;

  • 作者单位

    Indian Inst Sci Mat Res Ctr Bangalore 560012 Karnataka India;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号