...
首页> 外文期刊>Physical review. B, Condensed Matter And Materals Physics >Direct observation of conduction band plasmons and the related Burstein-Moss shift in highly doped semiconductors: A STEM-EELS study of Ga-doped ZnO
【24h】

Direct observation of conduction band plasmons and the related Burstein-Moss shift in highly doped semiconductors: A STEM-EELS study of Ga-doped ZnO

机译:直接观察高掺杂半导体中的导带等离子体激元和相关的Burstein-Moss位移:Ga掺杂ZnO的STEM-EELS研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The combination of high optical transparency and low electrical resistivity has made transparent conductive oxides (TCOs) a key technology in many optoelectronic applications. Furthermore, the study of TCOs yields insight into many fundamental parameters of semiconductors. For example, the high charge carrier concentration results in an apparent shift in the band gap, the so-called Burstein-Moss shift, in addition to plasmonie resonances in the near infrared regime. While both effects are related to the carrier concentration and band structure, their lateral distribution and interaction with boundary conditions such as interfaces and surfaces are difficult to assess, and a direct observation of the local distribution has remained elusive. Here we employ electron energy-loss spectroscopy in scanning transmission electron microscopy (STEM-EELS) for direct observation of spatially resolved plasmonic resonances and Burstein-Moss shift in gallium doped zinc oxide (GZO), one of the most widely used TCOs. A 25 nm thick GZO film with a carrier concentration of 7 × 10~(20) cm~(-3) has been grown epitaxially on a nominally undoped ZnO film. The GZO film shows a renormalized Burstein-Moss shift of 〜0.5 eV, in accordance with that expected from Hall effect measurements. The plasma resonance of the conduction band electrons is located at 0.82 eV in the bulk GZO, and with a substantial increase in intensity towards the sample surface, where a surface plasmon energy of 0.54 eV is observed. Hence we have directly measured differences in optical properties between the two films, the local variation across the GZO film has been studied, and we are also directly observing the difference between bulk and surface properties of GZO.
机译:高光学透明度和低电阻率的结合使透明导电氧化物(TCO)成为许多光电应用中的关键技术。此外,对TCO的研究可以深入了解半导体的许多基本参数。例如,高电荷载流子浓度会导致带隙出现明显的位移,即所谓的Burstein-Moss位移,此外还会导致近红外范围内的等离子体共振。虽然这两种效应都与载流子浓度和能带结构有关,但它们的横向分布以及与边界条件(如界面和表面)的相互作用很难评估,而对局部分布的直接观察仍然难以捉摸。在这里,我们在扫描透射电子显微镜(STEM-EELS)中采用电子能量损失光谱法,直接观察空间分布的等离子体共振和镓掺杂氧化锌(GZO)(最广泛使用的TCO之一)中的Burstein-Moss位移。在标称未掺杂的ZnO薄膜上外延生长了载流子浓度为7×10〜(20)cm〜(-3)的25 nm厚的GZO薄膜。根据霍尔效应测量的预期,GZO薄膜显示了重新标准化的Burstein-Moss偏移〜0.5 eV。导电带电子的等离子体共振位于体GZO中的0.82 eV,并且朝向样品表面的强度显着增加,在该表面处观察到的表面等离子体激元能量为0.54 eV。因此,我们直接测量了两种薄膜之间的光学特性差异,已经研究了整个GZO薄膜的局部变化,并且我们还直接观察了GZO体积和表面特性之间的差异。

著录项

  • 来源
    《Physical review. B, Condensed Matter And Materals Physics》 |2018年第11期|115301.1-115301.9|共9页
  • 作者单位

    Department of Physics, Centre for Materials Science and Nanotechnology, University of Oslo, P. O. Box 1048 Blindern, N-0316 Oslo, Norway;

    Department of Physics, Centre for Materials Science and Nanotechnology, University of Oslo, P. O. Box 1048 Blindern, N-0316 Oslo, Norway;

    Department of Physics, Centre for Materials Science and Nanotechnology, University of Oslo, P. O. Box 1048 Blindern, N-0316 Oslo, Norway;

    Institute of Photonics and Optoelectronics, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617 Taiwan;

    Institute of Photonics and Optoelectronics, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617 Taiwan;

    Semiconductor Research Center, Wright State University, Dayton, Ohio 45432, USA;

    Department of Physics, Centre for Materials Science and Nanotechnology, University of Oslo, P. O. Box 1048 Blindern, N-0316 Oslo, Norway;

    Department of Physics, Centre for Materials Science and Nanotechnology, University of Oslo, P. O. Box 1048 Blindern, N-0316 Oslo, Norway;

    Department of Physics, Centre for Materials Science and Nanotechnology, University of Oslo, P. O. Box 1048 Blindern, N-0316 Oslo, Norway;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号