...
首页> 外文期刊>Physical review. B, Condensed Matter And Materials Physics >Role of oxygen in TiN(111)/Si_xN_y/TiN(111) interfaces: Implications for superhard nanocrystalline nc-TiN/a-Si_3N_4 nanocomposites
【24h】

Role of oxygen in TiN(111)/Si_xN_y/TiN(111) interfaces: Implications for superhard nanocrystalline nc-TiN/a-Si_3N_4 nanocomposites

机译:氧在TiN(111)/ Si_xN_y / TiN(111)界面中的作用:对超硬纳米晶nc-TiN / a-Si_3N_4纳米复合材料的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We report first-principles density-functional theory calculations to investigate the role oxygen impurites play in determining the strength of TiN(111)/Si_xN_y/TiN(111) interfaces, as may occur in the superhard and highly thermally stable "nc-TiN/a-Si_3N_4" nanocomposite. For nitrogen-rich conditions, our investigations predict that the interfacial region consists of a thin "β-like Si_2N_3" layer with the silicon atoms tetrahedrally coordinated to nitrogen atoms, while under nitrogen-poor conditions, an octahedrally bonded Ti-Si-Ti arrangement is preferred. The tensile strength of TiN in the < 111 > direction is found to be notably higher than in the < 100 > and < 110 > directions (90 GPa, similar to the weakest < 111 > bonding direction in diamond), and is likely connected to the observed enhanced hardness of these nanocomposites. For the structure favored under the technically relevant nitrogen-rich conditions, oxygen atoms are predicted to diffuse to the interface region and occupy nitrogen sites. This gives rise to a notable reduction in the calculated interface tensile strength, which could lead to a decreased hardness, in accord with recent experimental indications. For the structure favored under nitrogen-poor conditions, oxygen impurities are predicted to have little effect on the tensile strength.
机译:我们报告了第一原理密度泛函理论计算,以研究氧杂质在确定TiN(111)/ Si_xN_y / TiN(111)界面强度中所起的作用,这可能发生在超硬且高度热稳定的“ nc-TiN / a-Si_3N_4“纳米复合材料。对于富氮条件,我们的研究预测界面区域由薄的“β状Si_2N_3”层组成,硅原子四面体与氮原子配位,而在贫氮条件下,八面体键合的Ti-Si-Ti排列是首选。发现TiN在<111>方向上的拉伸强度明显高于<100>和<110>方向(90 GPa,类似于金刚石中最弱的<111>粘结方向),并且很可能与观察到的这些纳米复合材料硬度的提高。对于在技术上相关的富氮条件下有利的结构,预计氧原子会扩散到界面区域并占据氮位。与最近的实验结果一致,这导致计算出的界面抗张强度的显着降低,这可能导致硬度降低。对于氮贫条件下有利的结构,预计氧杂质对拉伸强度的影响很小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号