...
首页> 外文期刊>Physical review. B, Condensed Matter And Materials Physics >Equations of state and phase transformation of depleted uranium DU-238 by high pressure-temperature diffraction studies
【24h】

Equations of state and phase transformation of depleted uranium DU-238 by high pressure-temperature diffraction studies

机译:贫铀DU-238的高温高压衍射研究状态和相变方程

获取原文
获取原文并翻译 | 示例
           

摘要

We have conducted in situ high-pressure diffraction experiments on depleted uranium (DU-238) at pressures up to 8.5 GPa and temperatures up to 1123 K. From the pressure (P)-volume (V)-temperature (T) measurements, thermoelastic parameters were derived for α-uranium based on a modified high-T Birch-Murnaghan equation of state and a thermal-pressure approach. With the pressure derivative of the bulk modulus K′_0 fixed at 4.0, we obtained ambient bulk modulus K_0= 117(2) GPa, temperature derivative of bulk modulus at constant pressure ((partial deriv K)/(partial derivd T))_P=-3.4(4)X 10~(-2) GPa/K and at constant volume ((partial deriv K)/(partial derivd T))_V=-1.1(6) X 10~(-2) GPa/K, volumetric thermal expansivity α_T=a+bT, with a=1.2(±0.4) X 10~(-5) K~(-1) and b=8.0(±0.7) X 10~(-8) K~(-2), and the pressure derivative of thermal expansion ((partial deriv K)/(partial derivd T))_T=-2.5(5) X 10~(-6) GPa~(-1) K~(-1). Within the experimental errors, the ambient bulk modulus and volumetric thermal expansion derived from this work are in good agreement with previous experimental results, whereas all other thermoelastic parameters represent the first determinations for the α phase of uranium. We also studied the α-γ phase transformation and obtained a phase boundary described by T (in K) = 1032+7.4P (in GPa). Although the γ-phase uranium cannot be pressure quenched to ambient conditions, it was observed to be stable upon cooling from 1123 to 300 K at pressures of 7-8 GPa. These observations indicate that pressure, in addition to the commonly utilized alloying techniques, provides an alternative route for stabilizing the γ-uranium at room temperature.
机译:我们在压力高达8.5 GPa,温度高达1123 K的贫铀(DU-238)上进行了原位高压衍射实验。根据压力(P)-体积(V)-温度(T)的测量,热弹性基于改进的高T Birch-Murnaghan状态方程和热压方法,得出了α-铀的参数。在将体积模量K′_0的压力导数固定为4.0的情况下,我们获得了环境体积模量K_0 = 117(2)GPa,在恒定压力下的体积模量的温度导数((偏导数K)/(偏导数T))_ P = -3.4(4)X 10〜(-2)GPa / K和恒定体积((偏导数K)/(偏导数T))_ V = -1.1(6)X 10〜(-2)GPa / K ,体积热膨胀系数α_T= a + bT,a = 1.2(±0.4)X 10〜(-5)K〜(-1),b = 8.0(±0.7)X 10〜(-8)K〜(- 2)和热膨胀的压力导数((偏导数K)/(偏导数T))_ T = -2.5(5)X 10〜(-6)GPa〜(-1)K〜(-1)。在实验误差范围内,从这项工作得出的环境体积模量和体积热膨胀与先前的实验结果非常吻合,而所有其他热弹性参数代表了铀α相的首次确定。我们还研究了α-γ相变,并获得了由T(以K为单位)= 1032 + 7.4P(以GPa为单位)描述的相界。尽管无法将γ相铀加压淬火至环境条件,但观察到它在7-8 GPa的压力下从1123冷却至300 K时是稳定的。这些观察结果表明,除了常用的合金化技术外,压力还为在室温下稳定γ-铀提供了另一种途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号