首页> 外文期刊>Physical review. B, Condensed Matter And Materials Physics >Antiferromagnetic metal to heavy-fermion metal quantum phase transition in the Kondo lattice model: A strong-coupling approach
【24h】

Antiferromagnetic metal to heavy-fermion metal quantum phase transition in the Kondo lattice model: A strong-coupling approach

机译:Kondo晶格模型中的反铁磁金属到重铁金属的量子相变:一种强耦合方法

获取原文
获取原文并翻译 | 示例
           

摘要

We study the quantum phase transition from an antiferromagnetic metal to a heavy fermion metal in the Kondo lattice model. Based on the strong-coupling approach we first diagonalize the Kondo coupling term. Since this strong-coupling approach makes the resulting Kondo term relevant, the Kondo hybridization persists even in the antiferromagnetic metal, indicating that fluctuations of Kondo singlets are not critical in the phase transition. We find that the quantum transition in our strong coupling approach results from softening of antiferromagnetic spin fluctuations of localized spins, driven by the Kondo interaction. Thus, the volume change of the Fermi surface becomes continuous across the transition. Using the boson representation of the localized spin n_i = 1/2z_(iσ)τ_(σσ')z~(iσ') with the spin-fractionalized excitation z_(iσ), we derive an effective U(1) gauge Lagrangian in terms of renormalized conduction electrons and fractionalized local-spin excitations interacting via U(1) gauge fluctuations, where the renormalized conduction electrons are given by composites of the conduction electrons and fractionalized spin excitations. Performing a mean field analysis based on this effective Kondo action, we find a mean field phase diagram as a function of J_K/D with various densities of conduction electrons, where J_K is the Kondo coupling strength and D the half-bandwidth of conduction electrons. The phase diagram shows a quantum transition, resulting from condensation of the spin-fractionalized bosons, from an antiferromagnetic metal to a heavy fermion metal away from half-filling. We show that beyond the mean field approximation our critical field theory characterized by the dynamic critical exponent z =2 can explain the observed non-Fermi liquid physics such as the specific heat coefficient γ ≡ C_υ/T~-ln T near the quantum critical point. Furthermore, we argue that if our scenario is applicable, there can exist a narrow region of an anomalous metallic phase with the spin gap near the quantum critical point.
机译:我们在Kondo晶格模型中研究了从反铁磁金属到重费米子金属的量子相变。基于强耦合方法,我们首先对近藤耦合项进行对角线化。由于这种强耦合方法使所得的Kondo项具有相关性,因此Kondo杂交甚至在反铁磁性金属中也持续存在,这表明Kondo单峰的波动在相变中并不关键。我们发现,在我们的强耦合方法中,量子跃迁是由Kondo相互作用驱动的局部自旋的反铁磁自旋涨落的软化导致的。因此,费米表面的体积变化在过渡过程中变得连续。使用局部自旋n_i = 1 / 2z_(iσ)τ_(σσ')z〜(iσ')的玻色子表示和自旋分形激发z_(iσ),我们得出有效的U(1)量规拉格朗日归一化的传导电子和分数局部自旋激发通过U(1)规范波动相互作用,其中归一化的传导电子是由传导电子和分数自旋激发的复合物给出的。基于这种有效的近藤作用进行平均场分析,我们发现平均场相位图是J_K / D与各种导电电子密度的函数,其中J_K是近藤耦合强度,D是导电电子的半带宽。相图显示了自旋碎裂的玻色子的凝结导致的量子跃迁,从反铁磁金属到重费米子金属,远离半填充。我们表明,除平均场近似外,以动态临界指数z = 2为特征的临界场理论可以解释观察到的非费米液体物理学,例如量子临界点附近的比热系数γ≡C_υ/ T〜-ln T 。此外,我们认为,如果我们的情况适用,则可能存在异常金属相的狭窄区域,其自旋间隙接近量子临界点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号