...
首页> 外文期刊>Physical review >Magnetic Order In Coupled Spin-half And Spin-one Heisenberg Chains In An Anisotropicrntriangular-lattice Geometry
【24h】

Magnetic Order In Coupled Spin-half And Spin-one Heisenberg Chains In An Anisotropicrntriangular-lattice Geometry

机译:各向异性三角形三角晶格几何中自旋半和自旋海森堡链中的磁阶

获取原文
获取原文并翻译 | 示例
           

摘要

We study spin-half and spin-one Heisenberg models in the limit where one-dimensional (1D) linear chains, with exchange constant J_1, are weakly coupled in an anisotropic triangular-lattice geometry. Results are obtained by means of linked-cluster series expansions at zero temperature around different magnetically ordered phases. We study the noncollinear spiral phases that arise classically in the model and the collinear antiferro-magnet that has been recently proposed for the spin-half model by Starykh and Balents [Phys. Rev. Lett. 98, 077205 (2007)] using a renormalization group approach. We find some evidence that such phases can be stabilized in the spin-half model for arbitrarily small coupling between the chains, though convergence of the sublattice-magnetization series remains unsatisfactory. For vanishing coupling between the chains the energy of each phase must approach that of decoupled linear chains. With increasing interchain coupling, the noncollinear phase appears to have a lower energy in our calculations. For the spin-one chain, we find that there is a critical interchain coupling needed to overcome the Haldane gap. When spin-one chains are coupled in the frustrated triangular-lattice geometry, the critical coupling required to close the Haldane gap is enhanced by an order of magnitude compared to unfrustrated interchain couplings in the square-lattice geometry. The collinear phase is not obtained for the spin-one Heisenberg model.
机译:我们在极限条件下研究自旋半和自旋Heisenberg模型,其中具有交换常数J_1的一维(1D)线性链在各向异性三角晶格几何中弱耦合。通过在零温度下围绕不同磁有序相的链簇级数展开获得结果。我们研究了模型中经典出现的非共线螺旋相位,以及Starykh和Balents [Phys。牧师98,077205(2007)]使用重归一化组方法。我们发现一些证据表明,尽管亚晶格磁化序列的收敛仍然不令人满意,但是对于自旋半模型中的链之间任意小的耦合,此类相位可以得到稳定。为了消除链之间的耦合,每相的能量必须接近解耦线性链的能量。随着链间耦合的增加,在我们的计算中非共线相似乎具有较低的能量。对于自旋链,我们发现需要关键的链间偶联来克服Haldane缺口。当自旋链以不合格的三角形晶格几何形状耦合时,与不易碎的链间链间耦合相比,闭合霍尔丹间隙所需的临界耦合提高了一个数量级。自旋海森堡模型无法获得共线相位。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号