首页> 外文期刊>Physical review >Competition between bulk and interface plasmonic modes in valence electron energy-loss spectroscopy of ultrathin SiO_2 gate stacks
【24h】

Competition between bulk and interface plasmonic modes in valence electron energy-loss spectroscopy of ultrathin SiO_2 gate stacks

机译:超薄SiO_2栅堆叠的价电子能谱中体等离子体和界面等离激元模式之间的竞争

获取原文
获取原文并翻译 | 示例
           

摘要

Low-energy excitations (approx< 50 eV) induced by fast electrons in materials can exhibit a collective and delo-calized nature. Here, we study such excitations in Si/SiO_2/Si stacks by spatially resolved electron energy-loss spectroscopy with a sub-2 A electron beam. Experimental spectra acquired in the SiO_2 layer are found to display delocalized contributions originating from interface plasmons, interband transitions, and Cerenkov radiation. A comparison with simulations based on a local semiclassical dielectric model, which includes relativistic effects, highlights the changes in interface plasmon coupling as the thickness of the central SiO_2 layer is reduced. We demonstrate both experimentally and theoretically that when the electron probe is located at the center of a 2 nm SiO_2 layer, the optical response expected from a bulk SiO_2 layer is suppressed and delocalized contributions dominate. As the layer thickness is reduced, the spectra become more like that of bulk Si even if the incident electrons travel only in the SiO_2 layer. This poses a major challenge for directly extracting local optical properties of ultrathin layers by electron energy-loss spectroscopy.
机译:材料中快速电子诱导的低能量激发(约<50 eV)可以表现出集体的和失范的性质。在这里,我们用亚2 A电子束通过空间分辨电子能量损失谱研究了Si / SiO_2 / Si叠层中的这种激发。发现在SiO_2层中获得的实验光谱显示出源自界面等离激元,带间跃迁和切伦科夫辐射的离域贡献。与基于局部半经典介电模型的仿真(包括相对论效应)进行的比较表明,随着中心SiO_2层厚度的减小,界面等离激元耦合发生了变化。我们在实验和理论上都证明,当电子探针位于2 nm SiO_2层的中心时,预期从大块SiO_2层发出的光学响应会受到抑制,并且离域贡献占主导地位。随着层厚度的减小,即使入射电子仅在SiO_2层中移动,光谱也变得更像块状Si。这对于通过电子能量损失谱直接提取超薄层的局部光学性质提出了重大挑战。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号