首页> 外文学位 >Electron Energy-Loss Spectroscopy Theory and Simulation Applied to Nanoparticle Plasmonics.
【24h】

Electron Energy-Loss Spectroscopy Theory and Simulation Applied to Nanoparticle Plasmonics.

机译:电子能损谱理论和模拟应用于纳米粒子等离子体。

获取原文
获取原文并翻译 | 示例

摘要

In this dissertation, the capacity of electron energy-loss spectroscopy (EELS) to probe plasmons is examined in detail. EELS is shown to be able to detect both electric hot spots and Fano resonances in contrast to the prevailing knowledge prior to this work. The most detailed examination of magnetoplasmonic resonances in multi-ring structures to date and the utility of electron tomography to computational plasmonics is explored, and a new tomographic method for the reconstruction of a target is introduced.;Since the observation of single-molecule surface-enhanced Raman scattering (SMSERS) in 1997, questions regarding the nature of the electromagnetic hot spots responsible for such observations still persist. A computational analysis of the electron- and photon-driven surface-plasmon resonances of monomer and dimer metal nanorods is presented to elucidate the differences and similarities between the two excitation mechanisms in a system with well understood optical properties. By correlating the nanostructure's simulated electron energy loss spectrum and loss-probability maps with its induced polarization and scattered electric field we discern how certain plasmon modes are selectively excited and how they funnel energy from the excitation source into the near- and far-field. Using a fully retarded electron-scattering theory capable of describing arbitrary three-dimensional nanoparticle geometries, aggregation schemes, and material compositions, we find that electron energy-loss spectroscopy (EELS) is able to indirectly probe the same electromagnetic hot spots that are generated by an optical excitation source. EELS is then employed in a scanning transmission electron microscope (STEM) to obtain maps of the localized surface plasmon modes of SMSERS-active nanostructures, which are resolved in both space and energy. Single-molecule character is confirmed by the bianalyte approach using two isotopologues of Rhodamine 6G. The origins of this observation are explored using a fully three-dimensional electrodynamics simulation of both the electron energy loss probability and the near-electric field enhancements.;The optical-frequency magnetic and electric properties of cyclic aromatic plasmon-supporting metal nanoparticle oligomers are explored through a combination of STEM/EELS simulation and first-principles theory. A tight-binding type model is introduced to explore the rich hybridization physics in these plasmonic systems and tested with full-wave numerical electrodynamics simulations of the STEM electron probe. Building from a microscopic electric model, connection is made at the macroscopic level between the hybridization of localized magnetic moments into delocalized magnetic plasmons of controllable magnetic order and the mixing of atomic pz orbitals into delocalized pi molecular orbitals of varying nodal structure spanning the molecule. It is found that the STEM electrons are uniquely capable of exciting all of the different hybridized eigenmodes of the nanoparticle assembly---including multipolar closed-loop ferromagnetic and antiferromagnetic plasmons, giant electric dipole resonances, and radial breathing modes---by raster scanning the beam to the appropriate position. Comparison to plane wave light scattering and cathodoluminescence (CL) spectroscopy is made.;Through numerical simulation, we predict the existence of the Fano interference effect in the EELS and CL of symmetry-broken nanorod dimers that are heterogeneous in material composition and asymmetric in length. The differing selection rules of the electron probe in comparison to the photon of a plane wave allow for the simultaneous excitation of both optically bright and dark plasmons of each monomer unit, suggesting that Fano resonances will not arise in EELS and CL. Yet, interferences are manifested in the dimer's scattered near- and far-fields and are evident in EELS and CL due to the rapid pi-phase offset in the polarizations between super-radiant and sub-radiant hybridized plasmon modes of the dimer as a function of the energy loss suffered by the impinging electron. Depending upon the location of the electron beam, we demonstrate the conditions under which Fano interferences will be present in both optical and electron spectroscopies (EELS and CL) as well as a new class of Fano interferences that are uniquely electron-driven and are absent in the optical response. The Fano interference phenomenon between localized surface plasmon resonances (LSPRs) of individual silver nanocubes is then investigated experimentally using dark-field optical microscopy and electron energy-loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM).;Finally, a group of five semi-collinear nanoparticles are modeled both by making a guess as to the third dimension from a single top-down electron micrograph and also through electron tomography. The degree of similarity between the computed properties of the target built through the two different methods is examined, as are the targets themselves. (Abstract shortened by UMI.).
机译:本文详细研究了电子能量损失谱仪(EELS)探测等离子体激元的能力。与这项工作之前的流行知识相比,EELS被证明能够检测电热点和Fano共振。探索了迄今对多环结构中磁等离子体共振的最详细检查,并探讨了电子层析成像在计算等离子体中的实用性,并介绍了一种用于重建目标的层析成像新方法。由于在1997年增强了拉曼散射(SMSERS),有关引起这种观测的电磁热点的性质的问题仍然存在。提出了对单体和二聚体金属纳米棒的电子和光子驱动的表面等离子体共振的计算分析,以阐明具有众所周知的光学特性的系统中两种激发机理之间的差异和相似性。通过将纳米结构的模拟电子能量损失谱图和损失概率图与其感应极化和散射电场相关联,我们可以辨别某些等离子体激元模式是如何被选择性激发的,以及它们如何将能量从激发源转移到近场和远场。使用能够描述任意三维纳米粒子的几何形状,聚集方案和材料成分的全延迟电子散射理论,我们发现电子能量损失谱(EELS)能够间接探测由电子产生的相同电磁热点光激发源。然后将EELS用于扫描透射电子显微镜(STEM)中,以获取SMSERS活性纳米结构的局部表面等离振子模式的图,这些图在空间和能量上均得到解析。通过使用两种罗丹明6G同位素的双分析物方法确认了单分子特征。使用电子能量损失几率和近电场增强的全三维电动力学模拟探索了这一观察的起源;探索了环状芳香族等离激元支持金属纳米粒子低聚物的光频率磁和电学性质通过STEM / EELS模拟和第一原理理论相结合。引入了紧密结合型模型,以探索这些等离激元系统中的丰富杂交物理,并通过STEM电子探针的全波数值电动力学仿真进行了测试。从微观电子模型建立,在宏观水平上建立了连接,这些连接是将局部磁矩杂交成可控磁序的离域磁等离子体,以及将原子pz轨道混合成跨越整个分子的不同节点结构的离域pi分子轨道。发现STEM电子具有独特的能力,可以通过光栅扫描激发纳米粒子组件的所有不同杂交本征模式,包括多极闭环铁磁和反铁磁等离子体激元,巨大的电偶极子共振和径向呼吸模式。光束到适当的位置。通过数值模拟,我们预测了对称破碎的纳米棒二聚体的EELS和CL中存在Fano干涉效应,该对称断裂的纳米棒二聚体在材料组成上是异质的,在长度上是不对称的。与平面波的光子相比,电子探针的不同选择规则允许同时激发每个单体单元的光学亮和暗等离激元,这提示在EELS和CL中不会出现Fano共振。然而,由于二聚体的超辐射和亚辐射杂化等离激元模式之间的极化具有快速的pi相位偏移,因此干扰在二聚体的分散近场和远场中表现出来,并且在EELS和CL中很明显。撞击的电子所遭受的能量损失。根据电子束的位置,我们证明了在光谱学和电子光谱学(EELS和CL)中将存在Fano干扰的条件,以及新型的Fano干扰是由电子驱动的,并且在电子学中不存在光学响应。然后,在扫描透射电子显微镜(STEM)中使用暗场光学显微镜和电子能量损失谱(EELS),通过实验研究了单个银纳米立方体的局部表面等离子体共振(LSPR)之间的Fano干扰现象。,通过从单个自上而下的电子显微照片猜测三维尺寸,以及通过电子断层扫描,对一组五个半共线纳米颗粒进行建模。检查通过两种不同方法构建的目标的计算属性之间的相似程度,以及目标本身。 (摘要由UMI缩短。)。

著录项

  • 作者

    Bigelow, Nicholas Walker.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Electromagnetics.;Nanoscience.;Condensed matter physics.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 241 p.
  • 总页数 241
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号