首页> 外文期刊>Physical review >Density functional theory studies of the structural, electronic, and phonon properties of Li_2O and Li_2CO_3: Application to CO_2 capture reaction
【24h】

Density functional theory studies of the structural, electronic, and phonon properties of Li_2O and Li_2CO_3: Application to CO_2 capture reaction

机译:Li_2O和Li_2CO_3的结构,电子和声子性质的密度泛函理论研究:在CO_2捕获反应中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

The structural, electronic, and phonon properties of Li_2O and Li_2CO_3 solids are investigated using density functional theory (DFT) and their thermodynamic properties for CO_2 absorption and desorption reactions are analyzed. The calculated bulk properties for both the ambient- and the high-pressure phases of Li_2O and Li_2CO_3 are in good agreement with available experimental measurements. The calculated band gap of the high-pressure phase of Li_2O (8.37 eV, indirect) is about 3 eV larger than the one corresponding to the ambient Li_2O phase (5.39 eV, direct), whereas the calculated band gap for the high-pressure phase of Li_2CO_3 (3.55 eV, indirect) is about 1.6 eV smaller than that for the ambient phase of Li_2CO_3 (5.10 eV, direct). The oxygen atoms in the ambient phase of the Li_2CO_3 crystal are not equivalent as reflected by two different sets of C-O bond lengths (1.28 and 1.31 A) and they form two different groups. When Li_2CO_3 dissociates, one group of O forms Li_2O, while the other group of O forms CO_2. The calculated phonon dispersion and density of states for the ambient phases of Li_2O and Li_2CO_3 are in good agreement with experimental measurements and other available theoretical results. Li_2O(.v)+CO_2(g)Li_2CO_3(.s) is the key reaction of lithium salt sorbents (such as lithium silicates and lithium zircornates) for CO_2 capture. The energy change and the chemical potential of this reaction have been calculated by combining DFT with lattice dynamics. Our results indicate that although pure Li_2O can absorb CO_2 efficiently, it is not a good solid sorbent for CO_2 capture because the reverse reaction, corresponding to Li_2CO_3 releasing CO_2, can only occur at very low CO_2 pressure and/or at very high temperature when Li_2CO_3 is in liquid phase.
机译:利用密度泛函理论(DFT)研究了Li_2O和Li_2CO_3固体的结构,电子和声子性质,并分析了它们对CO_2吸收和解吸的热力学性质。计算的Li_2O和Li_2CO_3的常压和高压相的整体性能与可用的实验测量结果非常吻合。 Li_2O高压相的计算带隙(8.37 eV,间接)比周围的Li_2O相(5.39 eV,直接)约大3 eV,而高压相的计算带隙Li_2CO_3(3.55 eV,间接)的电导率比Li_2CO_3(5.10 eV,直接)的环境相位小。 Li_2CO_3晶体的环境相中的氧原子不相同,这是由两组不同的C-O键长(1.28和1.31 A)所反映的,它们形成了两个不同的基团。当Li_2CO_3解离时,一组O形成Li_2O,而另一组O形成CO_2。 Li_2O和Li_2CO_3的环境相的声子色散和态密度的计算与实验测量和其他可用的理论结果非常吻合。 Li_2O(.v)+ CO_2(g)Li_2CO_3(.s)是锂盐吸附剂(例如硅酸锂和锆酸锂)对CO_2捕集的关键反应。通过将DFT与晶格动力学相结合来计算该反应的能量变化和化学势。我们的结果表明,尽管纯Li_2O可以有效地吸收CO_2,但它不是捕获CO_2的良好固体吸附剂,因为与Li_2CO_3释放CO_2相对的逆反应只能在非常低的CO_2压力和/或在很高的温度下发生,当Li_2CO_3处于液相。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号