首页> 外文期刊>Physical review >Theory of double-resonant Raman spectra in graphene: Intensity and line shape of defect-induced and two-phonon bands
【24h】

Theory of double-resonant Raman spectra in graphene: Intensity and line shape of defect-induced and two-phonon bands

机译:石墨烯中的双共振拉曼光谱理论:缺陷诱导和两个声子带的强度和线形

获取原文
获取原文并翻译 | 示例
       

摘要

We calculate the double-resonant (DR) Raman spectrum of graphene, and determine the lines associated to both phonon-defect processes (such as in the D line at ~ 1350 cm~(-1), D' at ~ 1600 cm~(-1), and D" at ~ 1100 cm~(-1)), and two-phonon ones (such as in the 2D, ID', or D + D" lines). Phonon and electronic dispersions reproduce calculations based on density-functional theory corrected with GW. Electron-light, -phonon, and -defect scattering matrix elements and the electronic linewidth are explicitly calculated. Defect-induced processes are simulated by considering different kinds of idealized defects. For an excitation energy of ∈_L = 2.4 eV, the agreement with measurements is very good and calculations reproduce the relative intensities among phonon-defect or among two-phonon lines; the measured small widths of the D, D', 2D, and ID' lines; the line shapes; the presence of small intensity lines in the 1800-2000-cm~(-1) range. We determine how the spectra depend on the excitation energy, on the light polarization, on the electronic linewidth, on the kind of defects, and on their concentration. According to the present findings, the intensity ratio between the 2D' and 2D lines can be used to determine experimentally the electronic linewidth. The intensity ratio between the D and D' lines depends on the kind of model defect, suggesting that this ratio could possibly be used to identify the kind of defects present in actual samples. Charged impurities outside the graphene plane provide an almost undetectable contribution to the Raman signal. The present analysis reveals that, for both D and 2D lines, the dominant DR processes are those in which electrons and holes are both involved in the scattering, because of a destructive quantum interference that kills processes involving only electrons or only holes. The most important phonons belong to the K → T direction (inner phonons) and not to the K → M one (outer phonons), as usually assumed. The small 2D linewidth at ∈_L = 2.4 eV is a consequence of the interplay between the opposite trigonal warpings of the electron and phonon dispersions. At higher excitation, e.g., ∈_L - 3.8 eV, the ID line becomes broader and evolves in an asymmetric double peak structure.
机译:我们计算石墨烯的双共振(DR)拉曼光谱,并确定与两个声子缺陷过程相关的谱线(例如D谱线在〜1350 cm〜(-1),D'谱在1600 cm〜( -1)和D“位于〜1100 cm〜(-1)),以及两个声子(例如在2D,ID'或D + D”行中)。声子和电子色散是基于GW校正的密度泛函理论的计算结果。明确计算出电子,光子和缺陷的散射矩阵元素和电子线宽。通过考虑不同种类的理想缺陷来模拟缺陷诱发的过程。对于ε_L= 2.4 eV的激发能,与测量值的一致性很好,计算结果重现了声子缺陷之间或两声子线之间的相对强度。测量的D,D',2D和ID'线的小宽度;线条形状;在1800-2000-cm〜(-1)范围内存在小强度线。我们确定光谱如何取决于激发能,光偏振,电子线宽,缺陷种类及其浓度。根据目前的发现,2D'和2D线之间的强度比可用于实验确定电子线宽​​。 D和D'线之间的强度比取决于模型缺陷的种类,这表明该比率可能可以用来识别实际样品中存在的缺陷的种类。石墨烯平面外的带电杂质对拉曼信号的贡献几乎不可检测。本分析表明,对于D线和2D线,主要的DR过程是电子和空穴都参与散射的过程,这是因为破坏性的量子干涉杀死了仅涉及电子或仅涉及空穴的过程。通常,最重要的声子属于K→T方向(内部声子),而不属于K→M方向(外部声子)。 ε_L= 2.4 eV处的2D小线宽是电子和声子色散的相反三角翘曲之间相互作用的结果。在较高的激励下,例如∈_L-3.8 eV,ID线变宽并以不对称的双峰结构演化。

著录项

  • 来源
    《Physical review》 |2011年第3期|p.035433.1-035433.25|共25页
  • 作者单位

    IMPMC, Universite Pierre et Marie Curie, CNRS, 4 place Jussieu, ¥-75252 Paris, France,Instituto de Fisica, Universidade Federal Fluminense, 24210-346 Niteroi, RJ, Brazil;

    IMPMC, Universite Pierre et Marie Curie, CNRS, 4 place Jussieu, ¥-75252 Paris, France;

    IMPMC, Universite Pierre et Marie Curie, CNRS, 4 place Jussieu, ¥-75252 Paris, France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    infrared and raman spectra;

    机译:红外光谱和拉曼光谱;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号