首页> 外文期刊>Physical review >Microscopic density matrix model for optical gain of terahertz quantum cascade lasers: Many-body, nonparabolicity, and resonant tunneling effects
【24h】

Microscopic density matrix model for optical gain of terahertz quantum cascade lasers: Many-body, nonparabolicity, and resonant tunneling effects

机译:太赫兹量子级联激光器的光学增益的微观密度矩阵模型:多体,非抛物线和共振隧穿效应

获取原文
获取原文并翻译 | 示例
           

摘要

Intersubband semiconductor-Bloch equations are investigated by incorporating many-body Coulomb interaction, nonparabolicity, and coherence of resonant tunneling transport in a quantitative way based on the density matrix theory. The calculations demonstrate the importance of these parameters on optical properties, especially the optical gain spectrum, of terahertz (THz) quantum cascade lasers (QCLs). The results show that the lasing frequency at gain peak calculated by the proposed microscopic density matrix model is closer to the experimentally measured result, compared with that calculated by the existing macroscopic density matrix model. Specifically, both the many-body interaction and nonparabolicity effects red-shift the gain spectrum and reduce the gain peak. In addition, as the injection-coupling strength increases, the gain peak value is enhanced and the spectrum is slightly broadened, while an increase of the extraction-coupling strength reduces the gain peak value and broadens the gain spectrum. The dependence of optical gain of THz QCLs on device parameters such as external electrical bias, dephasing rate, doping density, and temperature is also systematically studied in details. This model provides a more comprehensive picture of the optical properties of THz QCLs from a microscopic point of view and potentially enables a more accurate and faster prediction and calculation of the device performance, e.g., gain spectra, current-voltage characteristics, optical output powers, and nonlinear amplitude-phase coupling.
机译:通过基于密度矩阵理论以定量方式结合多体库仑相互作用,非抛物线性和共振隧穿传输的相干性,研究了带间半导体-布洛赫方程。计算结果证明了这些参数对太赫兹(THz)量子级联激光器(QCL)的光学特性(尤其是光学增益谱)的重要性。结果表明,与现有的宏观密度矩阵模型计算的结果相比,所提出的微观密度矩阵模型计算的增益峰值处的激光发射频率更接近实验测量结果。具体来说,多体相互作用和非抛物线效应都会使增益谱发生红移并减小增益峰值。另外,随着注入耦合强度的增加,增益峰值增加并且频谱稍微变宽,而提取耦合强度的增加减小增益峰值并且扩展增益频谱。还系统地研究了THz QCL的光学增益对器件参数(如外部电偏置,移相速率,掺杂密度和温度)的依赖性。该模型从微观的角度提供了THz QCL光学特性的更全面描述,并有可能实现更准确,更快的器件性能预测和计算,例如增益谱,电流-电压特性,光输出功率,和非线性幅度-相位耦合。

著录项

  • 来源
    《Physical review》 |2012年第23期|235306.1-235306.10|共10页
  • 作者单位

    School of Electrical & Electronic Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore, 639798,CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore, 637553;

    Temasek Laboratories, Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798;

    School of Electrical & Electronic Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore, 639798,CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore, 637553,School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    general laser theory; electronic transport in nanoscale materials and structures; tunneling; optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures;

    机译:一般激光理论纳米材料和结构中的电子传输;隧道低维;介观和纳米级材料和结构的光学特性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号