首页> 外文期刊>Physical review >Static and dynamic polar nanoregions in relaxor ferroelectric Ba(Ti_(1-x)Sn_x)O_3 system at high temperature
【24h】

Static and dynamic polar nanoregions in relaxor ferroelectric Ba(Ti_(1-x)Sn_x)O_3 system at high temperature

机译:高温弛豫铁电体Ba(Ti_(1-x)Sn_x)O_3系统中的静态和动态极性纳米区域

获取原文
获取原文并翻译 | 示例
           

摘要

Relaxor ferroelectrics are materials exhibiting dielectric dispersions in their maximum permittivity temperature without macroscopic phase transition into a ferroelectric state. Their exceptional properties are exploited in a variety of dielectric and piezoelectric applications. As it is generally believed that polar nanoregions play a crucial role in relaxor behavior, there are great interests in exploring how the atomic structures affect the relaxor properties. Here, using the dark; field imaging and atomic-resolution electron microscopy, we investigate the nano and atomic structure of a lead-free ferroelectric-relaxor Ba(Ti_(1-x)Sn_x)O_3 system at high temperature. The local atom displacements and their spatial correlations are measured, and the atomic structure of static polar nanoregions in the relaxors is reported. For the materials exhibiting normal ferroelectricity, no such static polar structures can be seen. Based on our experimental observations, we suggest the static polar nanoregions are responsible for the relaxor behavior in this lead-free system.
机译:弛豫铁电体是在其最大介电常数温度下表现出介电分散性而没有宏观相转变为铁电态的材料。它们的优异性能已在各种介电和压电应用中得到利用。正如通常认为的那样,极性纳米区域在弛豫器行为中起着至关重要的作用,因此人们对探索原子结构如何影响弛豫器性能有着极大的兴趣。在这里,使用黑暗;场成像和原子分辨率电子显微镜,我们研究了高温下无铅铁电弛豫体Ba(Ti_(1-x)Sn_x)O_3系统的纳米结构和原子结构。测量了局部原子位移及其空间相关性,并报道了弛豫器中静态极性纳米区域的原子结构。对于表现出正常铁电性的材料,看不到这种静态极性结构。根据我们的实验观察结果,我们建议静态极性纳米区域负责该无铅系统中的弛豫行为。

著录项

  • 来源
    《Physical review》 |2012年第1期|p.014118.1-014118.5|共5页
  • 作者单位

    Beijing National Center for Electron Microscopy, Tsinghua University, Beijing 100084, China;

    Beijing National Center for Electron Microscopy, Tsinghua University, Beijing 100084, China,Department of Materials Science and Engineering, the State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Advanced Materials, Tsinghua University, Beijing 100084, China;

    Beijing National Center for Electron Microscopy, Tsinghua University, Beijing 100084, China,Department of Materials Science and Engineering, the State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Advanced Materials, Tsinghua University, Beijing 100084, China;

    Beijing National Center for Electron Microscopy, Tsinghua University, Beijing 100084, China,Department of Materials Science and Engineering, the State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Advanced Materials, Tsinghua University, Beijing 100084, China;

    Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, Xi 'an Jiaotong University, Xi'an 710049, China;

    Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, Xi 'an Jiaotong University, Xi'an 710049, China;

    Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, Xi 'an Jiaotong University, Xi'an 710049, China,Peter Gruenberg Institute and Ernst Ruska Center for Microscopy and Spectroscopy with Electrons, Forschungszentrum Juelich, D-52425 Mich, Germany;

    Peter Gruenberg Institute and Ernst Ruska Center for Microscopy and Spectroscopy with Electrons, Forschungszentrum Juelich, D-52425 Mich, Germany;

    Department of Chemistry and 4D LABS, Simon Fraser University, Burnaby, British Columbia V5A 1A6, Canada;

    Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, Xi 'an Jiaotong University, Xi'an 710049, China,Department of Chemistry and 4D LABS, Simon Fraser University, Burnaby, British Columbia V5A 1A6, Canada;

    Beijing National Center for Electron Microscopy, Tsinghua University, Beijing 100084, China,Department of Materials Science and Engineering, the State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Advanced Materials, Tsinghua University, Beijing 100084, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    dielectric loss and relaxation;

    机译:介电损耗和弛豫;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号