...
首页> 外文期刊>Physical review >Electronic relaxation and coherent phonon dynamics in semiconducting single-walled carbon nanotubes with several chiralities
【24h】

Electronic relaxation and coherent phonon dynamics in semiconducting single-walled carbon nanotubes with several chiralities

机译:具有多个手性的半导体单壁碳纳米管的电子弛豫和相干声子动力学

获取原文
获取原文并翻译 | 示例
           

摘要

Coherent phonon (CP) dynamics and electronic relaxation in single-walled carbon nanotubes (SWNTs) are investigated in femtosecond pump-probe experiments. Using a sensitive multichannel lock-in amplifier, chirality-specific electronic relaxation and vibrational dynamics are resolved in SWNT ensembles composed of several chiral systems without the need for selective isolation of the different species by purification. The dynamics of vibrational wave packets are studied based on oscillatory changes in the absorbance of the systems. Modulations corresponding to the radial breathing mode (RBM), observed in the time traces of the absorbance change for the four chiral systems (6,4), (6,5), (7,5), and (8,3), have been analyzed in detail. The vibrational modes of the CP spectra are identified from the two-dimensional distribution of probe photon energy versus Fourier frequency. Resonance conditions and mode frequencies lead to definite chirality assignments. Coherent RBM phonon generation is analyzed using the probe photon energy-dependent amplitude profiles as a result of the spectral shift induced by wave-packet motion on the potential surface. The present study clarifies that the observed probe photon energy dependence is due to both the imaginary and real parts of the third-order susceptibility, corresponding to Raman (and Raman-like) gain and loss processes and to molecular phase modulation, respectively. The imaginary part is the dominant contribution to the modulation in the difference absorbance. It shows probe photon energy dependence in the form of a difference in absorbed photon energy between the spectra that are shifted and unshifted with vibrational frequency. The size of the Huang-Rhys factors from the difference fitting to the (6,4), (6,5), and (8,3) systems are 0.26, 0.32, and 0.75, respectively. The trend of the factors originates in the stiffness differences of the SWNT structures. The real part depends on the derivative of the absorbed photon energy spectrum due to cross-phase modulation, resulting from the change in refractive index during the molecular vibrations. This process induces a probe spectral change, as evidenced by first-derivative fitting using a small number of data points of probe photon energies. The effective nonlinear refractive index for each chiral system is determined to range from 0.2 to 3.1 × 10∽(-17) cm∽2/W.
机译:在飞秒泵浦探针实验中研究了单壁碳纳米管(SWNT)中的相干声子(CP)动力学和电子弛豫。使用灵敏的多通道锁定放大器,可以解决由几个手性系统组成的SWNT集成中手性特定的电子弛豫和振动动力学的问题,而无需通过纯化选择性分离不同的物种。基于系统吸光度的振荡变化研究振动波包的动力学。在四个手性系统(6,4),(6,5),(7,5)和(8,3)的吸光度变化的时间迹线中观察到的与径向呼吸模式(RBM)相对应的调制,已经详细分析过。从探测光子能量与傅立叶频率的二维分布可以确定CP光谱的振动模式。共振条件和模式频率导致确定的手性分配。相干的RBM声子的产生是使用探针光子能量相关的振幅分布图进行分析的,这是由于势面上的波包运动引起的光谱偏移的结果。本研究澄清说,观察到的探针光子能量依赖性是由于三阶磁化率的虚部和实部所致,分别对应于拉曼(和类似拉曼的)增益和损耗过程以及分子相位调制。虚部是差吸收度中调制的主要贡献。它以随振动频率移动和不移动的光谱之间吸收的光子能量之差的形式显示了探针光子能量的依赖性。从差分拟合到(6,4),(6,5)和(8,3)系统的Huang-Rhys因子的大小分别为0.26、0.32和0.75。这些因素的趋势源自SWNT结构的刚度差异。实部取决于由于分子振动过程中折射率的变化而引起的交叉相位调制所吸收的光子能谱的导数。这个过程会引起探针光谱变化,这通过使用少量探针光子能量数据点的一阶导数拟合可以证明。每个手性系统的有效非线性折射率确定为0.2到3.1×10∽(-17)cm∽2/ W。

著录项

  • 来源
    《Physical review》 |2013年第3期|035424.1-035424.16|共16页
  • 作者单位

    Advanced Ultrafast Laser Research Center and Department of Engineering Science, Faculty of Informatics and Engineering,University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan,JST, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan,Department of Electrophysics, National Chiao-Tung University, Hsinchu 30010, Taiwan,Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871, Japan;

    Advanced Ultrafast Laser Research Center and Department of Engineering Science, Faculty of Informatics and Engineering,University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan,JST, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan;

    Advanced Ultrafast Laser Research Center and Department of Engineering Science, Faculty of Informatics and Engineering,University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan,JST, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan;

    Advanced Ultrafast Laser Research Center and Department of Engineering Science, Faculty of Informatics and Engineering,University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan;

    Nanosystem Research Institute, AIST, Higashi 1-1-1, Tsukuba, Ibaraki 305-8562, Japan;

    Nanoelectronics Research Institute, AIST, Umezono 1-1-1, Tsukuba, Ibaraki 305-8568, Japan;

    Department of Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号