首页> 外文期刊>Physical review >Hard x-ray photoemission and density functional theory study of the internal electric field in SrTiO_3/LaAlO_3 oxide heterostructures
【24h】

Hard x-ray photoemission and density functional theory study of the internal electric field in SrTiO_3/LaAlO_3 oxide heterostructures

机译:SrTiO_3 / LaAlO_3氧化物异质结构中内部电场的硬X射线光发射和密度泛函理论研究

获取原文
获取原文并翻译 | 示例
           

摘要

A combined experimental and theoretical investigation of the electronic structure of the archetypal oxide heterointerface system LaAlO_3 on SrTiO_3 is presented. High-resolution, hard x-ray photoemission is used to uncover the occupation of Ti 3d states and the relative energetic alignment-and hence internal electric fields-within the LaAlO_3 layer. First, the Ti 2p core-level spectra clearly show occupation of Ti 3d states already for two unit cells of LaAlO_3. Second, the LaAlO_3 core levels were seen to shift to lower binding energy as the LaAlO_3 overlayer thickness, n, was increased, agreeing with the expectations from the canonical electron transfer model for the emergence of conductivity at the interface. However, not only is the energy offset of only ~300 meV between n = 2 (insulating interface) and n = 6 (metallic interface) an order of magnitude smaller than the simple expectation, but it is also clearly not the sum of a series of unit-cell-by-unit-cell shifts within the LaAlO_3 block. Both of these facts argue against the simple charge-transfer picture involving a cumulative shift of the LaAlO_3 valence bands above the SrTiO_3 conduction bands, resulting in charge transfer only for n≥ 4. We discuss effects which could frustrate this elegant and simple charge-transfer model, concluding that although it cannot be ruled out, photodoping by the x-ray beam is unlikely to be the cause of the observed behavior. Turning to the theoretical data, our density functional simulations show that the presence of oxygen vacancies at the LaAlO_3 surface at the 25% level reverses the direction of the internal field in the LaAlO_3. Therefore, taking the experimental and theoretical results together, a consistent picture emerges for real-life samples in which nature does not wait until n = 4 and already for n = 2 mechanisms other than internal-electric-field-driven electron transfer from idealized LaAlO_3 to near-interfacial states in the SrTiO_3 substrate are active in heading off the incipient polarization catastrophe that drives the physics in these systems.
机译:结合实验和理论研究了SrTiO_3上原型氧化物异质界面体系LaAlO_3的电子结构。高分辨率的硬X射线光发射用于揭示LaAlO_3层内Ti 3d态的占据和相对高能取向,进而揭示内部电场。首先,Ti 2p核心能级谱清楚地显示了两个LaAlO_3晶胞已经占据了Ti 3d态。其次,随着LaAlO_3覆盖层厚度n的增加,LaAlO_3核心能级转移到较低的结合能,这与规范电子传输模型对界面电导率的期望相符。然而,不仅n = 2(绝缘界面)和n = 6(金属界面)之间的能量偏移仅为〜300 meV,比简单的预期要小一个数量级,而且显然也不是一系列的总和。 LaAlO_3块中的每个单位单元移位的数量。这两个事实都与简单的电荷转移图相反,后者涉及LaAlO_3价带在SrTiO_3导带之上的累积移位,导致仅n≥4的电荷转移。我们讨论了可能会挫败这种优雅而简单的电荷转移的效应该模型得出结论,尽管不能排除,但X射线束的光掺杂不可能是观察到的行为的原因。转向理论数据,我们的密度泛函模拟表明,在LaAlO_3表面以25%的水平存在氧空位会反转LaAlO_3内场的方向。因此,将实验和理论结果结合在一起,对于现实生活中的样本会出现一个一致的图像,其中自然不等到n = 4且已经存在n = 2种机制,而不是理想化LaAlO_3的内部电场驱动电子转移在SrTiO_3衬底中达到近界面态的过程有效地阻止了导致这些系统中物理发生的初始极化灾难。

著录项

  • 来源
    《Physical review》 |2013年第8期|085128.1-085128.11|共11页
  • 作者单位

    Van der Waals Zeeman Institute, University of Amsterdam, Science Park 904,1098 XH Amsterdam, The Netherlands;

    Faculty of Science and Technology and MESA~+ Institute for Nanotechonology, University of Twente, P.O. Box217,7500 AE Enschede, The Netherlands;

    Faculty of Science and Technology and MESA~+ Institute for Nanotechonology, University of Twente, P.O. Box217,7500 AE Enschede, The Netherlands;

    Faculty of Science and Technology and MESA~+ Institute for Nanotechonology, University of Twente, P.O. Box217,7500 AE Enschede, The Netherlands;

    Van der Waals Zeeman Institute, University of Amsterdam, Science Park 904,1098 XH Amsterdam, The Netherlands ,SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025-7015, USA;

    Van der Waals Zeeman Institute, University of Amsterdam, Science Park 904,1098 XH Amsterdam, The Netherlands ,Laboratory of Solid State Physics, Department of Physics, Cornell University, Ithaca, New York 14853, USA;

    Van der Waals Zeeman Institute, University of Amsterdam, Science Park 904,1098 XH Amsterdam, The Netherlands;

    Faculty of Science and Technology and MESA~+ Institute for Nanotechonology, University of Twente, P.O. Box217,7500 AE Enschede, The Netherlands;

    Faculty of Science and Technology and MESA~+ Institute for Nanotechonology, University of Twente, P.O. Box217,7500 AE Enschede, The Netherlands;

    Faculty of Science and Technology and MESA~+ Institute for Nanotechonology, University of Twente, P.O. Box217,7500 AE Enschede, The Netherlands ,Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ,United Kingdom;

    Helmholtz Zentrum Berlin fuer Materialien und Energie GmbH, Albert-Einstein-Strasse 15 12489 Berlin, Germany;

    Faculty of Science and Technology and MESA~+ Institute for Nanotechonology, University of Twente, P.O. Box217,7500 AE Enschede, The Netherlands;

    Faculty of Science and Technology and MESA~+ Institute for Nanotechonology, University of Twente, P.O. Box217,7500 AE Enschede, The Netherlands;

    Faculty of Science and Technology and MESA~+ Institute for Nanotechonology, University of Twente, P.O. Box217,7500 AE Enschede, The Netherlands;

    Faculty of Science and Technology and MESA~+ Institute for Nanotechonology, University of Twente, P.O. Box217,7500 AE Enschede, The Netherlands;

    Faculty of Science and Technology and MESA~+ Institute for Nanotechonology, University of Twente, P.O. Box217,7500 AE Enschede, The Netherlands;

    Faculty of Science and Technology and MESA~+ Institute for Nanotechonology, University of Twente, P.O. Box217,7500 AE Enschede, The Netherlands;

    Faculty of Science and Technology and MESA~+ Institute for Nanotechonology, University of Twente, P.O. Box217,7500 AE Enschede, The Netherlands;

    Van der Waals Zeeman Institute, University of Amsterdam, Science Park 904,1098 XH Amsterdam, The Netherlands;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    electron states at surfaces and interfaces; interfaces; heterostructures; nanostructures; electrical properties of specific thin films; electronic transport in interface structures;

    机译:表面和界面的电子态;接口;异质结构纳米结构特定薄膜的电性能;接口结构中的电子传输;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号