...
首页> 外文期刊>Physical review >Magnetic quantum phase diagram of magnetic impurities in two-dimensional disordered electron systems
【24h】

Magnetic quantum phase diagram of magnetic impurities in two-dimensional disordered electron systems

机译:二维无序电子系统中磁性杂质的磁性量子相图

获取原文
获取原文并翻译 | 示例
           

摘要

The quantum phase diagram of disordered electron systems as a function of the concentration of magnetic impurities n_m and the local exchange coupling J is studied in the dilute limit. We take into account the Anderson localization of the electrons by a nonperturbative numerical treatment of the disorder potential. The competition between Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction J_(RKKY) and the Kondo effect, as governed by the temperature scale T_K, is known to give rise to a rich magnetic quantum phase diagram, the Doniach diagram. Our numerical calculations show that in a disordered system both the Kondo temperature T_K and J_(RKKY) as well as their ratio J_(RKKY)/T_K is widely distributed. However, we find a sharp cutoff of that distribution, which allows us to define a critical density of magnetic impurities n_c below which Kondo screening wins at all sites of the system above a critical coupling J_c, forming the Kondo phase [see Fig. 3(b)]. As disorder is increased, J_c increases and a spin coupled phase is found to grow at the expense of the Kondo phase. From these distribution functions we derive the magnetic susceptibility which show anomalous power-law behavior. In the Kondo phase that power is determined by the wide distribution of the Kondo temperature, while in the spin coupled phase it is governed by the distribution of J_(RKKY). At low densities and small J <J_c we identify a local-moment phase (LM). We also report results on a honeycomb lattice, graphene, where we find that the spin coupled phase is more stable against Kondo screening, but is more easily destroyed by disorder into a LM phase.
机译:在稀释极限条件下研究了无序电子系统的量子相图随磁性杂质浓度n_m和局部交换耦合J的变化。我们通过对扰动势的非扰动数值处理来考虑电子的安德森局部化。由温度标度T_K控制的Ruderman-Kittel-Kasuya-Yosida(RKKY)相互作用J_(RKKY)和Kondo效应之间的竞争会产生丰富的磁量子相图,即Doniach图。我们的数值计算表明,在无序系统中,近藤温度T_K和J_(RKKY)以及它们的比率J_(RKKY)/ T_K都广泛分布。但是,我们发现该分布有一个截断的界限,这使我们可以定义一个磁性杂质的临界密度n_c,在该密度以下,在临界耦合J_c以上的系统的所有位置,近藤筛选都将获胜,从而形成近藤相[见图3( b)]。随着无序度的增加,J_c增加,并且发现自旋耦合相以近藤相为代价增长。从这些分布函数中,我们得出磁化率,显示出异常的幂律行为。在近藤阶段,功率由近藤温度的广泛分布决定,而在自旋耦合阶段,功率由J_(RKKY)的分布控制。在低密度和小J <J_c的情况下,我们确定了局部矩相位(LM)。我们还报告了关于蜂窝状晶格石墨烯的结果,我们发现自旋耦合相对近藤筛选更稳定,但更容易被无序破坏为LM相。

著录项

  • 来源
    《Physical review》 |2014年第16期|165109.1-165109.6|共6页
  • 作者单位

    Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 790-784, South Korea,Department of Physics, Sungkyunkwan University, Suwon 440-746, Korea;

    Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 790-784, South Korea,School of Engineering and Science, Jacobs University Bremen, Bremen 28759, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    strongly correlated electron systems; heavy fermions;

    机译:强相关电子系统;重费米子;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号