首页> 外文期刊>Physical review >Collapsed armchair single-walled carbon nanotubes as an analog of closed-edged bilayer graphene nanoribbons
【24h】

Collapsed armchair single-walled carbon nanotubes as an analog of closed-edged bilayer graphene nanoribbons

机译:塌陷的扶手椅式单壁碳纳米管,类似于封闭边缘双层石墨烯纳米带

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Recently, radially collapsed single-walled carbon nanotubes (SWCNTs) have been recognized as an analog of closed-edged bilayer graphene nanoribbons (GNRs). To explore this analogy, we first make detailed analyses of the radial deformation and collapse of armchair SWCNTs using the density functional theory with van der Waals corrections. The traditional threshold diameters dividing SWCNTs into the three regimes are obtained as D_(meta) = 2.2 nm and D_(abs) =5.1 nm, where deformed configurations can be stabilized (metastable) for tubes with diameter D > D_(meta) and are energetically more favorable than the cylindrical tube for D > D_(abs) (absolute stability). We find that the present result for D_(abs) is marginally in excellent agreement with the most plausible experimental result. We also identify, for the first time, other threshold diameters given by D_(flat1) = 3.3 nm and D_(flat2) = 4.4 nm in between D_(meta) and D_(abs), where the cross-sectional shape of a collapsed SWCNT is peanutlike for D < D_(flat1), either peanutlike or dumbbell-like for D_(flat1) < D < D_(flat2), and dumbbell-like for D > D_(flat2) This bistability for tubes with D between D_(flat1) and D_(flat2) implies that the most stable configuration of these collapsed tubes cannot necessarily be achieved by molecular dynamics simulation. Electronic structures of collapsed armchair SWCNTs are also investigated to find that substantial band gaps develop in the flattened armchair tubes with Bernal stacked opposing faces. These band gap openings of flattened SWCNTs are explored by exploiting their analogies to bilayer graphene and bilayer GNRs. We find in particular that band gaps of flattened armchair SWCNTs with dumbbell-like cross sections, whose width is denoted W, show a scale behavior, ~1/W_(flat), with W_(flat) = W - 3.38 (nm), where W_(flat) is found to be the width of the flat region, consistent with recent theoretical analyses for a model of collapsed SWCNTs [T. Nakanishi and T. Ando, Phys. Rev. B 91, 155420 (2015)]. This behavior of band gaps is similar to that for monolayer zigzag GNRs (ZGNRs), ~ 1/W, where W is the ribbon width, and is indicative of quantum confinement. The largest band gap of ~ 130 meV, which develops in the flattened armchair (30,30) SWCNT, is comparable to that for bilayer ZGNRs (~160 meV), indicating that flattened armchair tubes could be used in place of ZGNRs in electronic device applications.
机译:最近,径向塌陷的单壁碳纳米管(SWCNT)被公认为是封闭边缘的双层石墨烯纳米带(GNR)的类似物。为了探索这种类比,我们首先使用密度泛函理论和范德华校正对扶手椅SWCNT的径向变形和塌陷进行详细分析。将SWCNT分为三个区域的传统阈值直径为D_(meta)= 2.2 nm和D_(abs)= 5.1 nm,对于直径D> D_(meta)的管,变形构型可以稳定(可转移)。对于D> D_(abs)(绝对稳定性),在能​​量上比圆柱管更有利。我们发现D_(abs)的当前结果与最合理的实验结果略有一致。我们还首次确定了D_(meta)和D_(abs)之间的D_(flat1)= 3.3 nm和D_(flat2)= 4.4 nm给出的其他阈值直径,其中塌陷的横截面形状对于D <D_(flat1),SWCNT为花生状;对于D_(flat1)<D <D_(flat2),SWCNT为花生状或哑铃状;对于D> D_(flat2),SWCNT为哑铃状。 flat1)和D_(flat2)表示这些塌缩管的最稳定配置不一定必须通过分子动力学模拟来实现。还对折叠式扶手椅SWCNT的电子结构进行了研究,以发现在带有Bernal堆叠的相对面的扁平扶手椅中会形成较大的带隙。通过利用扁平碳纳米管与双层石墨烯和双层GNR的相似性来探索这些带隙开口。我们特别发现,扁平的扶手椅状SWCNT的带隙(呈哑铃状横截面,其宽度表示为W)显示出〜1 / W_(flat)的尺度行为,其中W_(flat)= W-3.38(nm),其中W_(flat)被发现是平坦区域的宽度,这与最近对坍塌的SWCNTs模型的理论分析一致[T.中西和安藤T.,物理学。 B 91,155420(2015)。带隙的这种行为类似于单层之字形GNR(ZGNR)的行为,约为1 / W,其中W是带的宽度,表示量子限制。在扁平扶手椅(30,30)SWCNT中产生的最大带隙为〜130 meV,与双层ZGNR的最大带隙(〜160 meV)相当,这表明扁平的扶手椅管可以代替电子设备中的ZGNR。应用程序。

著录项

  • 来源
    《Physical review》 |2015年第24期|245429.1-245429.13|共13页
  • 作者单位

    Soft-Path Engineering Research Center, Faculty of Engineering, Iwate University, Morioka 020-8551, Japan;

    Department of Electrical Engineering and Information Science, Faculty of Engineering, Iwate University, Morioka 020-8551, Japan;

    Department of Materials Science, Faculty of Engineering, Iwate University, Morioka 020-8551, Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号