...
首页> 外文期刊>Physical review >Variational Monte Carlo method in the presence of spin-orbit interaction and its application to Kitaev and Kitaev-Heisenberg models
【24h】

Variational Monte Carlo method in the presence of spin-orbit interaction and its application to Kitaev and Kitaev-Heisenberg models

机译:自旋轨道相互作用下的变分蒙特卡罗方法及其在Kitaev和Kitaev-Heisenberg模型中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

We propose an accurate variational Monte Carlo method applicable in the presence of the strong spin-orbit interactions. The algorithm is applicable even in a wider class of Hamiltonians that do not have the spin-rotational symmetry. Our variational wave functions consist of generalized Pfaffian-Slater wave functions that involve mixtures of singlet and triplet Cooper pairs, Jastrow-Gutzwiller-type projections, and quantum number projections. The generalized wave functions allow describing states including a wide class of symmetry-broken states, ranging from magnetic and/or charge ordered states to superconducting states and their fluctuations, on equal footing without any ad hoc ansatz for variational wave functions. We detail our optimization scheme for the generalized Pfaffian-Slater wave functions with complex-number variational parameters. Generalized quantum number projections are also introduced, which imposes the conservation of not only the momentum quantum number but also Wilson loops. As a demonstration of the capability of the present variational Monte Carlo method, the accuracy and efficiency is tested for the Kitaev and Kitaev-Heisenberg models, which lack the SU(2) spin-rotational symmetry except at the Heisenberg limit. The Kitaev model serves as a critical benchmark of the present method: The exact ground state of the model is a typical gapless quantum spin liquid far beyond the reach of simple mean-field wave functions. The newly introduced quantum number projections precisely reproduce the ground state degeneracy of the Kitaev spin liquids, in addition to their ground state energy. An application to a closely related itinerant model described by a multiorbital Hubbard model with the spin-orbit interaction also shows promising benchmark results. The strong-coupling limit of the multiorbital Hubbard model is indeed described by the Kitaev model. Our framework offers accurate solutions for the systems where strong electron correlation and spin-orbit interaction coexist.
机译:我们提出了一种适用于强自旋轨道相互作用的精确变分蒙特卡罗方法。该算法甚至适用于不具有自旋旋转对称性的更广泛的哈密顿量类。我们的变分波函数由广义Pfaffian-Slater波函数组成,这些函数涉及单重态和三重态Cooper对,Jastrow-Gutzwiller型投影和量子数投影的混合。广义的波函数允许描述状态,包括从磁和/或电荷有序状态到超导状态及其波动在内的各种对称破坏状态,这些状态在没有变化的波函数的任何特殊条件下均等。我们详细介绍了具有复数变分参数的广义Pfaffian-Slater波函数的优化方案。还引入了广义量子数投影,这不仅意味着动量量子数而且还要求保持威尔逊环。为了证明当前变分蒙特卡罗方法的能力,对Kitaev和Kitaev-Heisenberg模型的准确性和效率进行了测试,这些模型除了在Heisenberg极限外,缺乏SU(2)自旋旋转对称性。 Kitaev模型是本方法的关键基准:模型的精确基态是典型的无间隙量子自旋液体,远远超出了简单的平均场波函数的范围。新引入的量子数投影除能精确再现基塔耶夫自旋液体的基态简并外,还能精确再现基塔耶夫自旋液体的基态简并性。在具有自旋轨道相互作用的多轨道哈伯德模型所描述的密切相关的巡回模型中的应用也显示出令人鼓舞的基准结果。 Kitaev模型确实描述了多轨道Hubbard模型的强耦合极限。我们的框架为强电子相关性和自旋轨道相互作用共存的系统提供了精确的解决方案。

著录项

  • 来源
    《Physical review》 |2015年第3期|035122.1-035122.11|共11页
  • 作者单位

    Department of Applied Physics, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan;

    Quantum-Phase Electronics Center (QPEC), The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan;

    Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba, 277-8581, Japan;

    Department of Applied Physics, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    lattice fermion models (hubbard model; etc.); quantized spin models;

    机译:格子费米子模型(哈伯德模型等);量化自旋模型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号