...
首页> 外文期刊>Physical review >Time-dependent rotatable magnetic anisotropy in polycrystalline exchange-bias systems: Dependence on grain-size distribution
【24h】

Time-dependent rotatable magnetic anisotropy in polycrystalline exchange-bias systems: Dependence on grain-size distribution

机译:多晶交换偏置系统中随时间变化的可旋转磁各向异性:取决于晶粒尺寸分布

获取原文
获取原文并翻译 | 示例
           

摘要

Angular-resolved measurements of the exchange-bias field and the coercive field are a powerful tool to distinguish between different competing magnetic anisotropies in polycrystalline exchange-bias layer systems. No simple analytical model is as yet available which considers time-dependent effects such as enhanced coercivity in magnetic easy and hard axis configurations arising from the grain-size distribution of the antiferromagnet. In this work, we expand an existing model class describing polycrystalline exchange-bias systems by a rotatable magnetic anisotropy taking into account the relaxation time of thermally unstable grains. Our calculations show that coercivity mediated by the rotatable magnetic anisotropy can be distinguished from coercivity arising from ferromagnetic anisotropy by the shape of the angular dependence. Additionally, we performed angular-resolved magnetization curve measurements using vectorial magneto-optic Kerr magnetometry. Fitting the proposed model to the experimental data shows excellent agreement and reveals the ferromagnetic anisotropy and properties connected to the grain-size distribution of the antiferromagnet. Therefore, a distinction between the different influences on coercivity and magnetic anisotropy becomes available.
机译:交换偏磁场和矫顽场的角分辨测量是区分多晶交换偏磁层系统中不同竞争磁各向异性的有力工具。还没有一个简单的分析模型可以考虑时间相关的影响,例如反铁磁体的晶粒尺寸分布所引起的易磁和硬轴配置中的矫顽力提高。在这项工作中,我们通过考虑热不稳定晶粒的弛豫时间,通过可旋转的磁各向异性扩展了描述多晶交换偏置系统的现有模型类别。我们的计算表明,可旋转磁各向异性介导的矫顽力可以通过角度依赖性的形状与由铁磁各向异性引起的矫顽力区分开。此外,我们使用矢量磁光Kerr磁强计执行了角分辨磁化曲线测量。将提出的模型拟合到实验数据显示出极好的一致性,并揭示了与反铁磁体的晶粒尺寸分布有关的铁磁各向异性和特性。因此,可以在矫顽力和磁各向异性的不同影响之间进行区分。

著录项

  • 来源
    《Physical review》 |2016年第18期|184407.1-184407.10|共10页
  • 作者单位

    Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany;

    Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany;

    Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany;

    Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany;

    Center for Spinelectronic Materials and Devices, Physics Department, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld, Germany;

    Center for Spinelectronic Materials and Devices, Physics Department, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld, Germany;

    Center for Spinelectronic Materials and Devices, Physics Department, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld, Germany ,Physics of Nanodevices, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号