...
首页> 外文期刊>Physical review. B, Condensed Matter And Materials Physics >Spin and orbital disordering by hole doping in Pr_(1-x)Ca_xVO_3
【24h】

Spin and orbital disordering by hole doping in Pr_(1-x)Ca_xVO_3

机译:Pr_(1-x)Ca_xVO_3中的空穴掺杂引起的自旋和轨道无序

获取原文
获取原文并翻译 | 示例
           

摘要

High-resolution powder x-ray diffraction and single-crystal neutron diffraction were used to investigate the crystal structure and magnetic ordering of the compound Pr_(1-x)Ca_xVO_3 (0 ≤ x ≤ 0.3), which undergoes an insulator-to-metal transition for x ~ 0.23. Since the ionic radii of Pr~(3+) and Ca~(2+) are almost identical and structural disorder is minimal, Pr_(1-x)Ca_xVO_3 is a good model system for the influence of hole doping on the spin and orbital correlations in transition metal oxides. The end member PrVO_3 is a Mott-Hubbard insulator, which exhibits a structural phase transition at T_s = 180K from an orthorhombic to a monoclinic structure with space groups Pbnm and P2_i/b, respectively. This transition is associated with the onset of orbital ordering and strong Jahn-Teller distortions of the VO_6 octahedra. Antiferromagnetic C-type order with vanadium moments oriented in the ab plane is observed below T_N = 140 K. Upon cooling, the vanadium moments induce a progressive magnetic polarization of the praseodymium sublattice, resulting in a ferrimagnetic structure with coexisting modes (C_x, F_y) and (F_x, C_y). In the insulating range of the Pr_(1-x)Ca_xVO_3 phase diagram, Ca doping reduces both the orbital and magnetic transition temperatures so that T_s = 108 K and T_n = 95 K for x = 0.20. The Jahn-Teller distortions and ordered vanadium moments also decrease upon doping. In a metallic sample with x = 0.30, Jahn-Teller distortions and long-range orbital ordering are no longer observable, and the average crystal structure remains orthorhombic down to low temperature. However, broadening of some lattice Bragg reflections indicate a significant increase in lattice strain. Antiferromagnetic short-range order with a weak ordered moment of 0.14(3) μB per vanadium atom could still be observed on the vanadium site below T ~ 60 K. We discuss these observations in terms of doping-induced spin-orbital polaron formation.
机译:高分辨率粉末X射线衍射和单晶中子衍射用于研究经历绝缘体与金属的化合物Pr_(1-x)Ca_xVO_3(0≤x≤0.3)的晶体结构和磁有序性转换为x〜0.23。由于Pr〜(3+)和Ca〜(2+)的离子半径几乎相同且结构无序性最小,因此Pr_(1-x)Ca_xVO_3是空穴掺杂对自旋和轨道影响的良好模型系统过渡金属氧化物的相关性。端部构件PrVO_3是一个Mott-Hubbard绝缘体,在T_s = 180K时从正交结构到具有空间群Pbnm和P2_i / b的单斜晶结构表现出结构相变。这种过渡与VO_6八面体的轨道有序化和强Jahn-Teller畸变有关。在T_N = 140 K以下观察到钒动量沿ab平面取向的反铁磁C型阶。冷却后,钒动量引起sub亚晶格的渐进式磁极化,从而形成具有共存模式(C_x,F_y)的亚铁磁结构和(F_x,C_y)。在Pr_(1-x)Ca_xVO_3相图的绝缘范围内,Ca掺杂会同时降低轨道和磁转变温度,因此对于x = 0.20,T_s = 108 K,T_n = 95K。掺杂时,Jahn-Teller变形和有序的钒矩也会减少。在x = 0.30的金属样品中,不再能观察到Jahn-Teller畸变和远距离轨道有序,并且平均晶体结构在低温下仍保持正交晶系。但是,某些晶格布拉格反射的变宽表明晶格应变显着增加。在T〜60 K以下的钒位上仍能观察到每个钒原子具有0.14(3)μB的弱有序矩的反铁磁短程有序。我们用掺杂诱导的自旋轨道极化子形成来讨论这些观察结果。

著录项

  • 来源
    《Physical review. B, Condensed Matter And Materials Physics》 |2016年第10期|104436.1-104436.11|共11页
  • 作者单位

    Helmholtz-Zentrum Berlin fuer Materialien und Energie, D-14109 Berlin, Germany;

    School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia,Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia;

    Swiss-Norwegian Beamline (SNBL) at the European Synchrotron Radiation Facility (ESRF), BP 220, F-38042 Grenoble Cedex 9, France;

    Swiss-Norwegian Beamline (SNBL) at the European Synchrotron Radiation Facility (ESRF), BP 220, F-38042 Grenoble Cedex 9, France,Laboratory of Crystallography, Ecole Polytechnique Federale de Lausanne (EPFL), BSP-Dorigny, CH-1015 Lausanne, Switzerland;

    Max-Planck-Institut fuer Festkoerperforschung, D-70569 Stuttgart, Germany;

    Department of Applied Physics, University of Tokyo, 113-8656 Tokyo, Japan;

    Department of Applied Physics, University of Tokyo, 113-8656 Tokyo, Japan;

    Department of Applied Physics, University of Tokyo, 113-8656 Tokyo, Japan,Correlated Electron Research Center (CERC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8562, Japan;

    Max-Planck-Institut fuer Festkoerperforschung, D-70569 Stuttgart, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号