...
首页> 外文期刊>Physical review. B, Condensed Matter And Materials Physics >Mechanism transition and strong temperature dependence of dislocation nucleation from grain boundaries: An accelerated molecular dynamics study
【24h】

Mechanism transition and strong temperature dependence of dislocation nucleation from grain boundaries: An accelerated molecular dynamics study

机译:晶界位错形核的机理转变和强温度依赖性:加速的分子动力学研究

获取原文
获取原文并翻译 | 示例
           

摘要

Accelerated molecular dynamics reveals a mechanism transition and strong temperature dependence of dislocation nucleation from grain boundaries (GBs) in Cu. At stress levels up to ~90% of the ideal dislocation-nucleation stress, atomic shuffling at the E structural unit in a GB acts as a precursor to dislocation nucleation, and eventually a single dislocation is nucleated. At very high stress levels near the ideal dislocation-nucleation stress, a multiple dislocation is collectively nucleated. In these processes, the activation free energy and activation volume depend strongly on temperature. The strain-rate dependence of the critical nucleation stress is studied and the result shows that the mechanism transition from the shuffling-assisted dislocation-nucleation mechanism to the collective dislocation-nucleation mechanism occurs during the strain rate increasing from 10~(-4) s~(-1) to 10~(10) s~(-1).
机译:加速的分子动力学揭示了Cu中晶界(GBs)的位错成核的机理转变和强烈的温度依赖性。在高达理想位错成核应力的〜90%的应力水平下,GB中E结构单元处的原子改组是位错成核的先兆,最终单个位错被成核。在接近理想位错成核应力的非常高的应力水平下,多个位错共同成核。在这些过程中,活化自由能和活化体积在很大程度上取决于温度。研究了临界成核应力的应变速率依赖性,结果表明,应变速率从10〜(-4)s增加时,发生了从混洗辅助位错成核机理向集体位错成核机理的转变。 〜(-1)到10〜(10)s〜(-1)。

著录项

  • 来源
    《Physical review. B, Condensed Matter And Materials Physics》 |2016年第10期|104110.1-104110.8|共8页
  • 作者单位

    Center for Elements Strategy Initiative for Structural Materials (ESISM), Kyoto University, Sakyo, Kyoto 606-8501, Japan,Department of Mechanical Science and Bioengineering, Osaka University, Osaka 560-8531, Japan;

    State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China,School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, China;

    Department of Materials Science and Engineering, National Chiao Tung University, 1001 University Road, Hsinchu City 300, Taiwan;

    Department of Mechanical Science and Bioengineering, Osaka University, Osaka 560-8531, Japan,Center for Advancing Materials Performance from the Nanoscale, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China;

    Department of Mechanical Science and Bioengineering, Osaka University, Osaka 560-8531, Japan,Center for Elements Strategy Initiative for Structural Materials (ESISM), Kyoto University, Sakyo, Kyoto 606-8501, Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号