...
首页> 外文期刊>Physical Review. B, Condensed Matter >Quantum electrodynamical theory of high-efficiency excitation energy transfer in laser-driven nanostructure systems
【24h】

Quantum electrodynamical theory of high-efficiency excitation energy transfer in laser-driven nanostructure systems

机译:激光驱动纳米结构系统中高效激发能量转移的量子电动力学理论

获取原文
获取原文并翻译 | 示例
           

摘要

A fundamental theory is developed for describing laser-driven resonance energy transfer (RET) in dimensionally constrained nanostructures within the framework of quantum electrodynamics. The process of RET communicates electronic excitation between suitably disposed emitter and detector particles in close proximity, activated by the initial excitation of the emitter. Here, we demonstrate that the transfer rate can be significantly increased by propagation of an auxiliary laser beam through a pair of nanostructure particles. This is due to the higher order perturbative contribution to the Forster-type RET, in which laser field is applied to stimulate the energy transfer process. We construct a detailed picture of how excitation energy transfer is affected by an off-resonant radiation field, which includes the derivation of second and fourth order quantum amplitudes. The analysis delivers detailed results for the dependence of the transfer rates on orientational, distance, and laser intensity factor, providing a comprehensive fundamental understanding of laser-driven RET in nanostructures. The results of the derivations demonstrate that the geometry of the system exercises considerable control over the laser-assisted RET mechanism. Thus, under favorable conformational conditions and relative spacing of donor-acceptor nanostructures, the effect of the auxiliary laser beam is shown to produce up to 70% enhancement in the energy migration rate. This degree of control allows optical switching applications to be identified.
机译:发展了一种基本理论,用于描述在量子电动力学框架内尺寸受限的纳米结构中的激光驱动共振能量转移(RET)。 RET的过程在适当放置的发射器粒子与检测器粒子之间紧密接近,并通过发射器的初始激发来激活电子激发。在这里,我们证明通过辅助激光束通过一对纳米结构粒子的传播可以显着提高传输速率。这是由于对Forster型RET的高阶微扰贡献,其中应用激光场来刺激能量转移过程。我们构建了一个详细的图片,说明激发能量传输如何受到非共振辐射场的影响,其中包括二阶和四阶量子振幅的推导。该分析提供了有关传输速率对方向,距离和激光强度因子的依赖性的详细结果,从而提供了对纳米结构中激光驱动的RET的全面基础了解。推导结果表明,系统的几何形状对激光辅助RET机构进行了相当大的控制。因此,在有利的构象条件和施主-受体纳米结构的相对间隔下,辅助激光束的作用显示出能量迁移率提高了70%。这种控制程度允许识别光交换应用。

著录项

  • 来源
    《Physical Review. B, Condensed Matter》 |2016年第8期|085133.1-085133.11|共11页
  • 作者单位

    Advanced Computing and Simulation Laboratory (AxL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria 3800, Australia;

    Advanced Computing and Simulation Laboratory (AxL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria 3800, Australia;

    Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA;

    School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号