首页> 外文期刊>Physical Review. B, Condensed Matter >Visualizing anisotropic propagation of stripe domain walls in staircaselike transitions of IrTe_2
【24h】

Visualizing anisotropic propagation of stripe domain walls in staircaselike transitions of IrTe_2

机译:可视化IrTe_2阶梯状跃迁中条状畴壁的各向异性传播

获取原文
获取原文并翻译 | 示例
           

摘要

We present a scanning tunneling microscopy (STM) study of the domain evolution across two first-order phase transitions of stripe modulations in IrTe_2 that occur at T_C ≈ 275 K and T_Ss ≈ 180 K, respectively. Phase coexistence of the hexagonal (1 × 1) structure and the (5 × 1) stripe modulation is observed at T_C, while various (p × 1) modulations (p = 3n + 2 with 2 ≤ n ∈ N) are observed below T_S. Using STM atomic resolution, we observe anisotropic propagation of domain boundaries along different directions, indicating significantly different kinetic energy barriers. These results are consistently explained by a theoretical analysis of the energy barrier for domain wall propagation as obtained by density functional theory. Individual switching processes observed by STM indicate that the wide temperature range of the transition from the (5 × 1) stripes to the (6 × 1)-ordered ground state is probably caused by the numerically limited subset of switching processes that are allowed between a given initial and the final state. The observations on IrTe_2 are discussed in terms of a "harmless staircase" with a finite number of first-order transitions between commensurate phases and within a "dynamical freezing" scenario.
机译:我们提出扫描隧道显微镜(STM)研究跨Ir__2中的条带调制的两个一阶相变的域演化,分别发生在T_C≈275 K和T_Ss≈180K。在T_C处观察到六角形(1×1)结构和(5×1)条纹调制的相位共存,而在T_S以下观察到各种(p×1)调制(p = 3n + 2(2≤n∈N))。 。使用STM原子分辨率,我们观察到畴边界沿不同方向的各向异性传播,表明动能垒显着不同。通过密度泛函理论对畴壁传播的能垒进行理论分析,可以始终如一地解释这些结果。 STM观察到的单个开关过程表明,从(5×1)条纹到(6×1)有序基态的过渡温度范围很宽,可能是由于开关过程之间在数值上有限的子集所引起的。给定初始状态和最终状态。关于IrTe_2的观察结果是在“无害阶梯”方面进行讨论的,该阶梯在相应的相之间以及在“动态冻结”情况下具有有限数量的一阶跃迁。

著录项

  • 来源
    《Physical Review. B, Condensed Matter》 |2016年第1期|014106.1-014106.7|共7页
  • 作者单位

    Physikalisches Institut, Experimentelle Physik Ⅱ, Universitaet Wuerzburg, 97074 Wuerzburg, Germany;

    Physikalisches Institut, Experimentelle Physik Ⅱ, Universitaet Wuerzburg, 97074 Wuerzburg, Germany;

    Physikalisches Institut, Experimentelle Physik Ⅱ, Universitaet Wuerzburg, 97074 Wuerzburg, Germany;

    Rutgers Center for Emergent Materials and Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA;

    Rutgers Center for Emergent Materials and Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA;

    Rutgers Center for Emergent Materials and Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA;

    Laboratory for Pohang Emergent Materials and Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea;

    Rutgers Center for Emergent Materials and Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA,Laboratory for Pohang Emergent Materials and Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea;

    Rutgers Center for Emergent Materials and Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA;

    Physikalisches Institut, Experimentelle Physik Ⅱ, Universitaet Wuerzburg, 97074 Wuerzburg, Germany,Wilhelm Conrad Roentgen-Center for Complex Material Systems (RCCM), Universitaet Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号