首页> 外文期刊>Physical review >Transconductance and effective Lande factors for quantum point contacts: Spin-orbit coupling and interaction effects
【24h】

Transconductance and effective Lande factors for quantum point contacts: Spin-orbit coupling and interaction effects

机译:量子点接触的跨导和有效兰德因子:自旋轨道耦合和相互作用效应

获取原文
获取原文并翻译 | 示例
           

摘要

We analyze the effective Lande factor g~* and its dependence on the orientation of the external magnetic field for a quantum point contact defined in the two-dimensional electron gas. The paper simulates the experimental procedure for evaluation of the effective Lande factors from the transconductance of a biased device in an external magnetic field. The contributions of the orbital effects of the magnetic field, the electron-electron interaction, and spin-orbit (SO) coupling are studied in low-temperature conditions (0.5 K). The anisotropy of the g~* factors for the in-plane magnetic field orientation, which seems counterintuitive from the perspective of the effective SO magnetic field, is explained in an analytical model of the constriction as due to the SO-induced subband mixing. The asymmetry of the transconductance as a function of the gate voltage is obtained in agreement with the experimental data and the results are explained as due to depletion of the electron gas within the quantum point contact constriction and the related reduction of the screening as described within the DFT approach. The results for transconductance and the g~* factors obtained are in a good agreement with the experimental data [Martin et al., Phys. Rev. B 81,041303 (2010)].
机译:对于二维电子气中定义的量子点接触,我们分析了有效的朗德因子g〜*及其对外部磁场取向的依赖性。本文模拟了从外部磁场中偏置器件的跨导评估有效兰德因数的实验程序。在低温条件下(0.5 K)研究了磁场轨道效应,电子-电子相互作用和自旋轨道(SO)耦合的贡献。平面内磁场取向的g〜*因子的各向异性(从有效SO磁场的角度来看似乎是直觉的)在收缩的分析模型中得到了解释,这是由于SO引起的子带混合所致。与实验数据一致,获得了跨导随栅极电压变化的不对称性,并解释了结果,这是由于量子点接触收缩内电子气的耗尽和屏蔽内相关的屏蔽的减少。 DFT方法。跨导的结果和g〜*因子与实验数据非常吻合[Martin等,Phys。修订版B 81,041303(2010)。

著录项

  • 来源
    《Physical review》 |2016年第3期|035304.1-035304.12|共12页
  • 作者单位

    AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, 30-059 Krakow, Poland;

    AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, 30-059 Krakow, Poland;

    AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, 30-059 Krakow, Poland;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号