...
首页> 外文期刊>Physical review. B, Condensed Matter And Materals Physics >Dirac fermions and pseudomagnetic fields in two-dimensional electron gases with triangular antidot lattices
【24h】

Dirac fermions and pseudomagnetic fields in two-dimensional electron gases with triangular antidot lattices

机译:具有三角解毒剂晶格的二维电子气中的狄拉克费米子和伪磁场

获取原文
获取原文并翻译 | 示例
           

摘要

We investigate theoretically the electronic properties of two-dimensional electron gases (2DEGs) with regular and distorted triangular antidot lattices. We show that the triangular antidot lattices embedded in 2DEGs behave like artificial graphene and host Dirac fermions. By introducing the Wannier representation, we obtain a tight-binding Hamiltonian including the second-nearest-neighboring hopping, which agrees well with the numerically exact solutions. Based on the tight-binding model, we find that spatially nonuniform distortions of the antidot lattices strongly modify the electronic structures, generate pseudomagnetic fields and the well-defined Landau levels. In contrast to graphene, we can design the nonuniform distortions to generate various configurations of pseudomagnetic fields. We show that the snake orbital states arise by designing the ±B pseudomagnetic field configuration. We find that the disorders of antidot lattices during fabrication would not affect the basic feature of the Dirac electrons, but they lead to a reduction in conductance in strong disorder cases.
机译:我们从理论上研究具有规则和扭曲的三角形解毒点晶格的二维电子气(2DEG)的电子性质。我们表明,嵌入2DEG的三角形解毒剂晶格的行为像人造石墨烯和宿主狄拉克费米子。通过引入Wannier表示,我们获得了紧紧的哈密顿量,其中包括次近邻跳变,这与数值精确解非常吻合。基于紧密绑定模型,我们发现解毒剂点阵在空间上的不均匀变形强烈地改变了电子结构,产生了伪磁场和定义良好的朗道能级。与石墨烯相比,我们可以设计非均匀畸变以生成各种伪磁场。我们表明,通过设计±B伪磁场配置可以产生蛇形轨道状态。我们发现,在制造过程中解毒剂点阵的紊乱不会影响Dirac电子的基本特征,但会导致在强紊乱情况下电导降低。

著录项

  • 来源
    《Physical review. B, Condensed Matter And Materals Physics》 |2017年第3期|035406.1-035406.8|共8页
  • 作者单位

    SKLSM, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, China,College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China;

    SKLSM, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, China;

    SKLSM, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, China,Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China;

    SKLSM, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, China;

    SKLSM, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, China,College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China,Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号