首页> 外文期刊>Physical review. B, Condensed Matter And Materals Physics >Coupled-mode theory for the interaction between acoustic waves and spin waves in magnonic-phononic crystals: Propagating magnetoelastic waves
【24h】

Coupled-mode theory for the interaction between acoustic waves and spin waves in magnonic-phononic crystals: Propagating magnetoelastic waves

机译:耦合波理论在声子-声子晶体中声波与自旋波之间相互作用的原理:传播磁弹性波

获取原文
获取原文并翻译 | 示例
           

摘要

We have investigated codirectional and contradirectional couplings between spin wave and acoustic wave in a one-dimensional periodic structure (the so-called magphonic crystal). The system consists of two ferromagnetic layers alternating in space. We have taken into consideration materials commonly used in magnonics: yttrium iron garnet, CoFeB, permalloy, and cobalt. The coupled mode theory (CMT) formalism has been successfully implemented to describe the magnetoelastic interaction as a periodic perturbation in the magphonic crystal. The results of CMT calculations have been verified by more rigorous simulations with the frequency-domain plane-wave method and the time-domain finite-element method. The presented resonant coupling in the magphonic crystal is an active in-space mechanism which spatially transfers energy between propagating spin and acoustic modes, thus creating a propagating magnetoelastic wave. We have shown that CMT analysis of the magnetoelastic coupling is an useful tool to optimize and design a spin wave-acoustic wave transducer based on magphonic crystals. The effect of spin-wave damping has been included to the model to discuss the efficiency of such a device. Our model shows that it is possible to obtain forward conversion of the acoustic wave to the spin wave in case of codirectional coupling and backward conversion in case of contradirectional coupling. That energy transfer may be realized for broadband coupling and for generation of spin waves which are of different wavelength (in particular, shorter) than exciting acoustic waves.
机译:我们研究了一维周期性结构(所谓的磁晶)中自旋波与声波之间的同向和反向耦合。该系统由在空间上交替的两个铁磁层组成。我们已经考虑了大块磁铁矿中常用的材料:钇铁石榴石,CoFeB,坡莫合金和钴。耦合模式理论(CMT)形式主义已成功实现,将磁弹性相互作用描述为磁晶体中的周期性扰动。 CMT计算的结果已通过频域平面波方法和时域有限元方法进行了更严格的仿真验证。在磁晶体中提出的共振耦合是一种主动的空间内机制,该机制在传播的自旋和声学模式之间在空间上转移能量,从而产生传播的磁弹性波。我们已经表明,磁弹性耦合的CMT分析是优化和设计基于磁晶体的自旋声波换能器的有用工具。自旋波阻尼的影响已包含在模型中,以讨论这种设备的效率。我们的模型表明,在同向耦合的情况下,可以获得声波到自旋波的前向转换,而在反向耦合的情况下,可以获得后向转换。可以实现能量传递以用于宽带耦合以及用于产生与激发声波具有不同波长(特别是短于)的自旋波。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号