...
首页> 外文期刊>Physical review. B, Condensed Matter And Materals Physics >Localization landscape theory of disorder in semiconductors. I. Theory and modeling
【24h】

Localization landscape theory of disorder in semiconductors. I. Theory and modeling

机译:半导体无序的局部化景观理论。一,理论与建模

获取原文
获取原文并翻译 | 示例

摘要

We present here a model of carrier distribution and transport in semiconductor alloys accounting for quantum localization effects in disordered materials. This model is based on the recent development of a mathematical theory of quantum localization which introduces for each type of carrier a spatial function called localization landscape. These landscapes allow us to predict the localization regions of electron and hole quantum states, their corresponding energies, and the local densities of states. We show how the various outputs of these landscapes can be directly implemented into a drift-diffusion model of carrier transport and into the calculation of absorption/emission transitions. This creates a new computational model which accounts for disorder localization effects while also capturing two major effects of quantum mechanics, namely, the reduction of barrier height (tunneling effect) and the raising of energy ground states (quantum confinement effect), without having to solve the Schrodinger equation. Finally, this model is applied to several one-dimensional structures such as single quantum wells, ordered and disordered superlattices, or multiquantum wells, where comparisons with exact Schrodinger calculations demonstrate the excellent accuracy of the approximation provided by the landscape theory.
机译:我们在这里提出了一种半导体合金中载流子分布和传输的模型,解释了无序材料中的量子定位效应。该模型基于量子定位数学理论的最新发展,该理论为每种类型的载体引入了一种称为定位景观的空间功能。这些景观使我们能够预测电子和空穴量子态的局域区域,它们的相应能量以及态的局部密度。我们展示了如何将这些景观的各种输出直接应用于载流子运输的漂移扩散模型以及吸收/发射跃迁的计算中。这创建了一个新的计算模型,该模型既解决了无序局域化的影响,又捕捉了量子力学的两个主要影响,即势垒高度的减小(隧道效应)和能量基态的升高(量子约束效应),而无需求解薛定inger方程。最后,该模型被应用于几个一维结构,例如单量子阱,有序和无序的超晶格或多量子阱,其中与精确的Schrodinger计算进行比较证明了景观理论提供的出色的近似精度。

著录项

  • 来源
    《Physical review. B, Condensed Matter And Materals Physics》 |2017年第14期|144204.1-144204.18|共18页
  • 作者单位

    Laboratoire de Physique de la Matiere Condensee, Ecole polytechnique, CNRS, Universite Paris Saclay, 91128 Palaiseau Cedex, France;

    Laboratoire de Physique de la Matiere Condensee, Ecole polytechnique, CNRS, Universite Paris Saclay, 91128 Palaiseau Cedex, France;

    Graduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan;

    Graduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan;

    Laboratoire de Physique de la Matiere Condensee, Ecole polytechnique, CNRS, Universite Paris Saclay, 91128 Palaiseau Cedex, France,Materials Department, University of California, Santa Barbara, California 93106, USA;

    School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号