...
首页> 外文期刊>Physical Review. B, Condensed Matter >All-electrical generation of spin-polarized currents in quantum spin Hall insulators
【24h】

All-electrical generation of spin-polarized currents in quantum spin Hall insulators

机译:量子自旋霍尔绝缘体中的全电产生自旋极化电流

获取原文
获取原文并翻译 | 示例

摘要

The control and generation of spin-polarized current (SPC) without magnetic materials and an external magnetic field is a big challenge in spintronics and normally requires a spin-flip mechanism. In this Rapid Communication, we show the theoretical discovery of all-electrical generation of SPC without relying on spin-flip spin-orbit coupling (SOC). We find that the SPC can be produced as long as an energy-dependent phase difference between the spin up and down electrons can be established. We verify this through quantum transport calculations on a gated stanene zigzag nanoribbon, which is a quantum spin Hall (QSH) insulator. Our calculations indicate that the transient current as well as ac conductance are significantly spin polarized, which results from the genetic phase difference between spin up and down electrons after traversing the system. Our results are robust against edge imperfections and generally valid for other QSH insulators, such as silicene and germanene, etc. These findings establish a different route for generating SPCs by purely electrical means and open the door for interesting applications of semiconductor spintronics.
机译:在自旋电子学中,没有磁性材料和外部磁场的自旋极化电流(SPC)的控制和产生是一个巨大的挑战,通常需要自旋翻转机制。在本快速通讯中,我们展示了不依赖自旋翻转自旋轨道耦合(SOC)的SPC全电发电的理论发现。我们发现只要可以建立自旋向上和向下电子之间依赖于能量的相位差,就可以生产SPC。我们通过对门控的锡烯字形纳米带(量子自旋霍尔(QSH)绝缘体)进行量子传输计算来验证这一点。我们的计算表明,瞬态电流和交流电导率都显着自旋极化,这是由于穿过系统后自旋向上和向下电子之间的遗传相位差引起的。我们的结果对边缘缺陷有很强的抵抗力,并且通常可用于其他QSH绝缘子,例如硅烯和锗烯等。这些发现为纯电子方式产生SPC的方法建立了一条不同的途径,并为半导体自旋电子学的有趣应用打开了大门。

著录项

  • 来源
    《Physical Review. B, Condensed Matter 》 |2017年第12期| 121407.1-121407.5| 共5页
  • 作者单位

    Department of Physics and the Center of Theoretical and Computational Physics, The University of Hong Kong, Hong Kong, China;

    Department of Physics and the Center of Theoretical and Computational Physics, The University of Hong Kong, Hong Kong, China;

    State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy,Shanxi University, Taiyuan 030006, China ,Department of Physics and the Center of Theoretical and Computational Physics, The University of Hong Kong, Hong Kong, China ,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China;

    Department of Physics and the Center of Theoretical and Computational Physics, The University of Hong Kong, Hong Kong, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号