...
首页> 外文期刊>Physical review. B, Condensed Matter And Materals Physics >Order, disorder, and tunable gaps in the spectrum of Andreev bound states in a multiterminal superconducting device
【24h】

Order, disorder, and tunable gaps in the spectrum of Andreev bound states in a multiterminal superconducting device

机译:多端超导装置中Andreev束缚态谱中的有序,无序和可调间隙

获取原文
获取原文并翻译 | 示例

摘要

We consider the spectrum of Andreev bound states (ABSs) in an exemplary four-terminal superconducting structure where four chaotic cavities are connected by quantum point contacts to the terminals and to each other forming a ring. We nickname the resulting device 4T-ring. Such a tunable device can be realized in a 2D electron gas-superconductor or a graphene-based hybrid structure. We concentrate on the limit of a short structure and large conductance of the point contacts where there are many ABS in the device forming a quasicontinuous spectrum. The energies of the ABS can be tuned by changing the superconducting phases of the terminals. We observe the opening and closing of gaps in the spectrum upon changing the phases. This concerns the usual proximity gap that separates the levels from zero energy as well as less usual "smile" gaps that split the levels of the quasicontinuous spectrum. We demonstrate a remarkable crossover in the overall spectrum that occurs upon changing the ratio of conductances of the inner and outer point contacts. At big values of the ratio (closed limit), the levels exhibit a generic behavior expected for the spectrum of a disordered system manifesting level repulsion and Brownian "motion" upon changing the phases. At small values of the ratio (open limit), the levels are squeezed into narrow bunches separated by wide smile gaps. Each bunch consists of almost degenerate ABS formed by Andreev reflection between two adjacent terminals. We study in detail the properties of the spectrum in the limit of a small ratio, paying special attention to the crossings of bunches. We distinguish two types of crossings: (i) with a regular phase dependence of the levels and (ⅱ) crossings where the Brownian motion of the levels leads to an apparently irregular phase dependence. We work out a perturbation theory that explains the observations both at a detailed level of random scattering in the device and at a phenomenological level of positively defined random matrices. The unusual properties of the spectrum originate from rather unobvious topological effects. The topology of the first kind is restricted to the semiclassical limit and related to the winding of the semiclassical Green function. It is responsible for the closing of the proximity gaps. The topology of the second kind comes about the discreteness of the number of modes in the point contacts and is responsible for the smile gaps. The topology of the third kind leads to the emergence of Weyl points in the spectrum and is not discussed in the context of this article.
机译:我们考虑示例性的四端超导结构中的安德列夫键合态(ABS)的光谱,其中四个混沌腔通过量子点触点连接到端头并彼此形成环。我们将得到的设备称为4T环。这样的可调装置可以以二维电子气超导体或基于石墨烯的混合结构来实现。我们集中于点接触的短结构和大电导的限制,在这种情况下,设备中存在许多形成准连续光谱的ABS。可以通过改变端子的超导相位来调整ABS的能量。当改变相位时,我们观察到光谱中间隙的打开和关闭。这涉及将能级与零能量分开的通常的接近间隙以及将准连续频谱的能级分开的较少见的“微笑”间隙。我们展示了在改变内部和外部点接触的电导比时发生的整个频谱中的显着交叉。在较大的比率值(封闭极限)下,这些电平显示出对无序系统的光谱所期望的一般行为,该系统在更改相位时会表现出电平排斥和布朗“运动”。在较小的比率值(开放极限)下,将电平压缩成由宽微笑间隙分隔的窄束。每个束由两个相邻端子之间的安德列夫反射形成的几乎退化的ABS组成。我们在小比例的范围内详细研究了光谱的特性,尤其要注意束的交叉。我们区分了两种类型的相交:(i)水平的规则相依性和(ⅱ)水平的布朗运动导致明显不规则的相依性的相交。我们制定了一个扰动理论,解释了在设备中随机散射的详细级别和在正定义的随机矩阵的现象学级别上的观察结果。频谱的异常特性源自不太明显的拓扑效应。第一种拓扑限于半经典极限,并且与半经典格林函数的缠绕有关。它负责缩小邻近间隙。第二种拓扑结构涉及点接触中模式数量的离散性,并导致了微笑间隙。第三类拓扑结构导致频谱中出现Weyl点,因此本文不对其进行讨论。

著录项

  • 来源
    《Physical review. B, Condensed Matter And Materals Physics》 |2017年第4期|045411.1-045411.20|共20页
  • 作者单位

    Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands,The Institute for Solid State Physics, The University of Tokyo, 5-1-5, Kashiwa-no-ha, Kashiwa, Chiba 277-0882, Japan;

    Fachbereich Physik, Universitaet Konstanz, D-78457 Konstanz, Germany;

    Fachbereich Physik, Universitaet Konstanz, D-78457 Konstanz, Germany;

    Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号