首页> 外文期刊>Physical review letters >Spintronics Meets Nonadiabatic Molecular Dynamics: Geometric Spin Torque and Damping on Dynamical Classical Magnetic Texture due to an Electronic Open Quantum System
【24h】

Spintronics Meets Nonadiabatic Molecular Dynamics: Geometric Spin Torque and Damping on Dynamical Classical Magnetic Texture due to an Electronic Open Quantum System

机译:闪光灯符合非等级分子动力学:由于电子打开量子系统,几何自旋扭矩和动态古典磁力纹理的阻尼

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

We analyze a quantum-classical hybrid system of steadily precessing around the fixed axis slow classical localized magnetic moments (LMMs), forming a head-to-head domain wall, surrounded by fast electrons driven out of equilibrium by LMMs and residing within a metallic wire whose connection to macroscopic reservoirs makes electronic quantum system an open one. The model captures the essence of dynamical noncollinear magnetic textures encountered in spintronics, while making it possible to obtain the exact time-dependent nonequilibrium density matrix of electronic systems and split it into four contributions. The Fermi surface contribution generates dissipative (or dampinglike in spintronics terminology) spin torque on LMMs, as the counterpart of electronic friction in nonadiabatic molecular dynamics (MD). Among two Fermi sea contributions, one generates geometric torque dominating in the adiabatic regime, which remains as the only nonzero contribution in a closed system with disconnected reservoirs. Locally geometric torque can have nondissipative (or fieldlike in spintronics terminology) component, acting as the counterpart of geometric magnetism force in nonadiabatic MD, as well as a much smaller dampinglike component acting as "geometric friction." Such current-independent geometric torque is absent from widely used micromagnetics or atomistic spin dynamics modeling of magnetization dynamics based on the Landau-Lifshitz-Gilbert equation, while previous analyses of how to include our Fermi-surface dampinglike torque have severely underestimated its total magnitude.
机译:我们分析了围绕固定轴慢型局部局部磁矩(LMMS)稳定精细的量子古典混合系统,形成头到头部畴壁,由LMMS围绕平衡驱动的快速电子围绕并驻留在金属线内。与宏观储存器的连接且使电子量子系统成为一个开放式。该模型捕获了在闪光灯中遇到的动态非可折叠磁性纹理的本质,同时可以获得电子系统的确切时间依赖性非QuiLibrium矩阵,并将其分成四个贡献。 Fermi表面贡献在LMMS上产生偏离扭矩的耗散(或湿润的术语)旋转扭矩,作为非等离分子动力学(MD)中的电子摩擦的对应物。在两个费米贡献中,一个人在绝热制度中产生了几何扭矩,这仍然是唯一的封闭系统中的唯一贡献,其中封闭系统具有断开的储存器。局部几何扭矩可以具有Nondissipative(或在纤维级别术语中的现场状)组分,作为非抗动率MD中的几何磁力的对应物,以及一种充当“几何摩擦”的更小的阻尼部件。根据Landau-Lifshitz-Gilbert方程,不存在这种独立的几何扭矩,从广泛使用的微量磁化或原子自旋动力学建模,而如何包括我们的Fermi-Surface Dampinglike扭矩的先前分析严重低估了其总幅度。

著录项

  • 来源
    《Physical review letters》 |2020年第18期|187202.1-187202.7|共7页
  • 作者单位

    Univ Delaware Dept Phys & Astron Newark DE 19716 USA;

    Univ Delaware Dept Phys & Astron Newark DE 19716 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号