...
首页> 外文期刊>Physical review letters >High-Threshold Low-Overhead Fault-Tolerant Classical Computation and the Replacement of Measurements with Unitary Quantum Gates
【24h】

High-Threshold Low-Overhead Fault-Tolerant Classical Computation and the Replacement of Measurements with Unitary Quantum Gates

机译:高阈值低开销容错经典计算和用整体量子门更换测量

获取原文
获取原文并翻译 | 示例

摘要

von Neumann's classic "multiplexing" method is unique in achieving high-threshold fault-tolerant classical computation (FTCC), but has several significant barriers to implementation: (i) the extremely complex circuits required by randomized connections, (ii) the difficulty of calculating its performance in practical regimes of both code size and logical error rate, and (iii) the (perceived) need for large code sizes. Here we present numerical results indicating that the third assertion is false, and introduce a novel scheme that eliminates the two remaining problems while retaining a threshold very close to von Neumann's ideal of 1/6. We present a simple, highly ordered wiring structure that vastly reduces the circuit complexity, demonstrates that randomization is unnecessary, and provides a feasible method to calculate the performance. This in turn allows us to show that the scheme requires only moderate code sizes, vastly outperforms concatenation schemes, and under a standard error model a unitary implementation realizes universal FTCC with an accuracy threshold of p 5.5%, in which p is the error probability for 3-qubit gates. FTCC is a key component in realizing measurement-free protocols for quantum information processing. In view of this, we use our scheme to show that all-unitary quantum circuits can reproduce any measurement-based feedback process in which the asymptotic error probabilities for the measurement and feedback are (32/63) p approximate to 0.51p and 1.51p, respectively.
机译:Von Neumann的经典“多路复用”方法在实现高阈值容错经典计算(FTCC)方面是独一无二的,但是实现了几个重要障碍:(i)随机连接所需的极其复杂的电路,(ii)计算难度它在代码大小和逻辑错误率的实际制度中的性能,(iii)(iii)需要大型代码大小。在这里,我们呈现了数值结果,表明第三个断言是假的,并引入一种新颖的方案,可以消除两个剩余问题,同时保留阈值非常接近von Neumann的1/6的理想。我们提出了一种简单的高度有序的接线结构,大大降低了电路复杂性,表明随机化是不必要的,并提供了一种计算性能的可行方法。这反过来又允许我们表明该方案只需要中等代码大小,大大优于连接方案,并且在标准错误模型下,单一实现实现了P <5.5%的精度阈值的通用FTCC,其中P是误差概率对于3个Qubit盖茨。 FTCC是实现对量子信息处理的无测量协议的关键组件。鉴于此,我们使用我们的方案来表明全整体量子电路可以再现任何基于测量的反馈过程,其中测量和反馈的渐近误差概率(32/63)P近似为0.51p和1.51p , 分别。

著录项

  • 来源
    《Physical review letters 》 |2017年第8期| 030503.1-030503.6| 共6页
  • 作者单位

    US Army Res Lab Computat & Informat Sci Directorate Adelphi MD 20783 USA|Univ Massachusetts Dept Phys Boston MA 02125 USA;

    US Army Res Lab Computat & Informat Sci Directorate Adelphi MD 20783 USA|Univ Massachusetts Dept Phys Boston MA 02125 USA|Louisiana State Univ Hearne Inst Theoret Phys Baton Rouge LA 70803 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号