...
首页> 外文期刊>PHYSICAL REVIEW E >Stability-to-instability transition in the structure of large-scale networks
【24h】

Stability-to-instability transition in the structure of large-scale networks

机译:大型网络结构中的从稳定性到不稳定的过渡

获取原文
获取原文并翻译 | 示例

摘要

We examine phase transitions between the “easy,” “hard,” and “unsolvable” phases when attempting to identifynstructure in large complex networks (“community detection”) in the presence of disorder induced by networkn“noise” (spurious links that obscure structure), heat bath temperature T , and system size N. The partition of angraph into q optimally disjoint subgraphs or “communities” inherently requires Potts-type variables. In earliernwork [Philos. Mag. 92, 406 (2012)], when examining power law and other networks (and general associated Pottsnmodels), we illustrated that transitions in the computational complexity of the community detection problemntypically correspond to spin-glass-type transitions (and transitions to chaotic dynamics in mechanical analogs) atnboth high and low temperatures and/or noise. The computationally “hard” phase exhibits spin-glass type behaviornincluding memory effects. The region over which the hard phase extends in the noise and temperature phasendiagram decreases as N increases while holding the average number of nodes per community fixed. This suggestsnthat in the thermodynamic limit a direct sharp transition may occur between the easy and unsolvable phases.nWhen present, transitions at low temperature or low noise correspond to entropy driven (or “order by disorder”)nannealing effects, wherein stability may initially increase as temperature or noise is increased before becomingnunsolvable at sufficiently high temperature or noise. Additional transitions between contending viable solutionsn(such as those at different natural scales) are also possible. Identifying community structure via a dynamicalnapproach where “chaotic-type” transitions were found earlier. The correspondence between the spin-glass-typencomplexity transitions and transitions into chaos in dynamical analogs might extend to other hard computationalnproblems. In this work, we examine large networks (with a power law distribution in cluster size) that have anlarge number of communities (q u0002 1). We infer that large systems at a constant ratio of q to the number ofnnodes N asymptotically tend towards insolvability in the limit of large N for any positive T . The asymptoticnbehavior of temperatures below which structure identification might be possible, T× = O[1/ ln q], decreasesnslowly, so for practical system sizes, there remains an accessible, and generally easy, global solvable phase at lowntemperature. We further employ multivariate Tutte polynomials to show that increasing q emulates increasing Tnfor a general Potts model, leading to a similar stability region at low T . Given the relation between Tutte andnJones polynomials, our results further suggest a link between the above complexity transitions and transitionsnassociated with random knots.
机译:当尝试在网络“噪声”(使结构模糊的虚假链接)引起的混乱中尝试识别大型复杂网络中的结构(“社区检测”)时,我们研究了“容易”,“困难”和“无法解决”阶段之间的相变。 ),热浴温度T和系统大小N。将图形划分为q个最佳不相交的子图形或“社区”本质上需要Potts类型的变量。在早期的工作中[Philos。魔术师92,406(2012)],当检查幂律和其他网络(以及一般相关的Pottsnmodels)时,我们说明了社区检测问题的计算复杂性过渡通常对应于自旋玻璃型过渡(以及向混沌动力学过渡)。机械类似物)同时存在高温和低温和/或噪音。计算上的“硬”阶段表现出自旋玻璃类型的行为,包括记忆效应。噪声和温度相位图中硬相延伸的区域随着N的增加而减小,同时保持每个社区的平均节点数不变。这表明,在热力学极限中,在容易相和不可解决相之间可能会发生直接的急剧转变。n当存在时,在低温或低噪声下的转变对应于熵驱动(或“无序排列”)的退火效应,其中稳定性最初会随着在足够高的温度或噪声下无法解决之前,温度或噪声会升高。竞争可行解决方案之间的其他过渡(例如,处于不同自然尺度的解决方案)也是可能的。通过动力学方法识别社区结构,在动力学方法中较早地发现了“混沌型”转变。自旋玻璃型复杂度转换和动力学类似物转换成混沌之间的对应关系可能会扩展到其他硬计算问题。在这项工作中,我们研究了具有大量社区的大型网络(集群中具有幂律分布的幂律分布)(q u0002 1)。我们推断,对于任何正T,以q与n个节点N的数目恒定的比率渐近的大型系统趋向于不可解。 T = O [1 / ln q]可能会降低结构的温度的渐近行为逐渐降低,因此,对于实际的系统规模,在低温下仍存在可访问且通常容易获得的整体可溶相。我们进一步使用多元Tutte多项式来表明,对于一般的Potts模型,增加的q会模拟增加的Tn,从而在低T处导致相似的稳定性区域。给定Tutte和nJones多项式之间的关系,我们的结果进一步表明上述复杂度转换与与随机结相关的转换之间存在联系。

著录项

  • 来源
    《PHYSICAL REVIEW E 》 |2012年第6期| 1-25| 共25页
  • 作者单位

    Department of Physics Washington University in St. Louis Campus Box 1105 1 Brookings Drive St. Louis Missouri 63130 USA;

    Department of Physics Washington University in St. Louis Campus Box 1105 1 Brookings Drive St. Louis Missouri 63130 USA;

    Department of Physics Washington University in St. Louis Campus Box 1105 1 Brookings Drive St. Louis Missouri 63130 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号