首页> 外文期刊>PHYSICAL REVIEW E >Path-preference cellular-automaton model for traffic flow through transit points and its application to the transcription process in human cells
【24h】

Path-preference cellular-automaton model for traffic flow through transit points and its application to the transcription process in human cells

机译:通过交通点的交通流的路径优先元胞自动机模型及其在人类细胞转录过程中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

We all use path routing everyday as we take shortcuts to avoid traffic jams, or by using faster traffic means.nPrevious models of traffic flow of RNA polymerase II (RNAPII) during transcription, however, were restrictednto one dimension along the DNA template. Here we report the modeling and application of traffic flow inntranscription that allows preferential paths of different dimensions only restricted to visit some transit points,nas previously introduced between the 5u0002 and 3u0002 end of the gene. According to its position, an RNAPII proteinnmolecule prefers paths obeying two types of time-evolution rules. One is an asymmetric simple exclusion processn(ASEP) along DNA, and the other is a three-dimensional jump between transit points in DNA where RNAPIIs arenstaying. Simulations based on our model, and comparison experimental results, reveal how RNAPII molecules arendistributed at the DNA-loop-formation-related protein binding sites as well as CTCF insulator proteins (or exons).nAs time passes after the stimulation, the RNAPII density at these sites becomes higher. Apparent far-distancenjumps in one dimension are realized by short-range three-dimensional jumps between DNA loops. We confirmnthe above conjecture by applying our model calculation to the SAMD4A gene by comparing the experimentalnresults. Our probabilistic model provides possible scenarios for assembling RNAPII molecules into transcriptionnfactories, where RNAPII and related proteins cooperatively transcribe DNA.
机译:我们都每天都在使用路径路由,因为我们采取捷径来避免交通拥堵,或者通过使用更快的交通手段。n以前,RNA聚合酶II(RNAPII)在转录过程中的交通流模型在DNA模板上仅限于一维。在这里,我们报告了交通流量转录的建模和应用,该模型允许不同尺寸的优先路径仅被限制访问某些转运点,而先前在基因5u0002和3u0002末端之间引入了nas。根据其位置,RNAPII蛋白分子倾向于遵循两种类型的时间演化规则的路径。一个是沿着DNA的不对称简单排斥过程(ASEP),另一个是RNAPII停留在DNA的转运点之间的三维跃迁。根据我们的模型进行的模拟和比较实验结果表明,RNAPII分子如何分布在与DNA环形成相关的蛋白结合位点以及CTCF绝缘子蛋白(或外显子)上.n随着刺激时间的流逝,RNAPII密度在这些网站变得更高。一维中明显的远距离跳跃是通过DNA环之间的短距离三维跳跃实现的。通过比较实验结果,将我们的模型计算应用于SAMD4A基因,我们证实了上述推测。我们的概率模型为将RNAPII分子组装到转录工厂中提供了可能的方案,其中RNAPII和相关蛋白协同转录DNA。

著录项

  • 来源
    《PHYSICAL REVIEW E》 |2012年第2期|1-11|共11页
  • 作者单位

    Research Center for Advanced Science and Technology The University of Tokyo 4-6-1 Komaba Meguro-ku Tokyo 153-8904 Japan;

    Graduate School of Mathematical Sciences The University of Tokyo 3-8-1 Komaba Meguro-ku Tokyo 153-8914 Japan;

    Research Center for Advanced Science and Technology The University of Tokyo 4-6-1 Komaba Meguro-ku Tokyo 153-8904 Japan;

    Genome Institute of Singapore 60 Biopolis Street #02-01 Genome 138672 Singapore;

    Research Center for Advanced Science and Technology The University of Tokyo 4-6-1 Komaba Meguro-ku Tokyo 153-8904 Japan;

    Graduate School of Mathematical Sciences The University of Tokyo 3-8-1 Komaba Meguro-ku Tokyo 153-8914 Japan;

    Graduate School of Mathematical Sciences The University of Tokyo 3-8-1 Komaba Meguro-ku Tokyo 153-8914 Japan;

    Research Center for Advanced Science and Technology The University of Tokyo 4-6-1 Komaba Meguro-ku Tokyo 153-8904 Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号