首页> 外文期刊>PHYSICAL REVIEW A >High-fidelity controlled-σ Z gate for resonator-based superconducting quantum computers
【24h】

High-fidelity controlled-σ Z gate for resonator-based superconducting quantum computers

机译:用于基于谐振器的超导量子计算机的高保真可控σZ门

获取原文
获取原文并翻译 | 示例
           

摘要

A possible building block for a scalable quantum computer has recently been demonstrated [Mariantoninet al., Science 334, 61 (2011)]. This architecture consists of superconducting qubits capacitively coupled both tonindividual memory resonators as well as a common bus. In this work we study a natural primitive entangling gatenfor this and related resonator-based architectures, which consists of a controlled-σz (CZ) operation between anqubit and the bus. The CZ gate is implemented with the aid of the noncomputational qubit |2u0002 state [Strauch et al.,nPhys. Rev. Lett. 91, 167005 (2003)]. Assuming phase or transmon qubits with 300 MHz anharmonicity, we shownthat by using only low frequency qubit-bias control it is possible to implement the qubit-bus CZ gate with 99.9%n(99.99%) fidelity in about 17 ns (23 ns) with a realistic two-parameter pulse profile, plus two auxiliary z rotations.nThe fidelity measure we refer to here is a state-averaged intrinsic process fidelity, which does not include anyneffects of noise or decoherence. These results apply to a multiqubit device that includes strongly coupled memorynresonators.We investigate the performance of the qubit-bus CZ gate as a function of qubit anharmonicity, identifynthe dominant intrinsic error mechanism and derive an associated fidelity estimator, quantify the pulse shapensensitivity and precision requirements, simulate qubit-qubit CZ gates that are mediated by the bus resonator,nand also attempt a global optimization of system parameters including resonator frequencies and couplings. Ournresults are relevant for a wide range of superconducting hardware designs that incorporate resonators and suggestnthat it should be possible to demonstrate a 99.9% CZ gate with existing transmon qubits, which would constitutenan important step towards the development of an error-corrected superconducting quantum computer.
机译:最近已经证明了可伸缩量子计算机的可能构造块[Mariantoninet等,科学334,61(2011)]。这种架构包括电容性耦合双声存储谐振器和公共总线的超导量子位。在这项工作中,我们研究了一种自然的原始纠缠门,用于这种和相关的基于谐振器的体系结构,该体系由在位和总线之间的受控σz(CZ)操作组成。 CZ门的实现是借助非计算量子位| 2u0002状态[Strauch等,nPhys。牧师91,167005(2003)]。假设相位或transmon量子位具有300 MHz的非谐性,我们表明通过仅使用低频量子位偏置控制,可以在大约17 ns(23 ns)的时间内实现99.9%n(99.99%)保真度的量子位总线CZ门。一个真实的两参数脉冲轮廓,加上两个辅助z旋转。n我们在这里所说的保真度度量是状态平均的固有过程保真度,其中不包括噪声或去相干的任何影响。这些结果适用于包含强耦合存储谐振器的多量子位器件。我们研究了量子位总线CZ门的性能与量子位非谐性的关系,确定了主要的固有误差机制并推导了相关的保真度估计器,量化了脉冲整形灵敏度和精度要求,模拟由总线谐振器介导的qubit-qubit CZ门,并且还尝试对包括谐振器频率和耦合在内的系统参数进行全局优化。我们的结果与包含谐振器的各种超导硬件设计有关,并建议应该可以使用现有的跨门量子比特演示99.9%的CZ门,这将是开发误差校正的超导量子计算机的重要一步。

著录项

  • 来源
    《PHYSICAL REVIEW A》 |2013年第2期|1-19|共19页
  • 作者单位

    Department of Physics and Astronomy University of Georgia Athens Georgia 30602 USA;

    Department of Physics and Astronomy University of Georgia Athens Georgia 30602 USADepartment of Electrical Engineering University of California Riverside California 92521 USA;

    Department of Physics and Astronomy University of Georgia Athens Georgia 30602 USA;

    Department of Electrical Engineering University of California Riverside California 92521 USA;

    Department of Physics University of California Santa Barbara California 93106 USA;

    Department of Physics and Astronomy University of Georgia Athens Georgia 30602 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号