...
首页> 外文期刊>Physica status solidi >Hybrid organic-inorganic materials for integrated optoelectronic devices
【24h】

Hybrid organic-inorganic materials for integrated optoelectronic devices

机译:集成光电子器件的混合有机-无机材料

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A device containing a microcavity organic light-emitting diode (OLED) and a magnetooptically active bismuth iron garnet (BIG) Bi_3Fe_5O_(12) waveguide combines a planar source for polarized light generation with the material exhibiting the highest known Faraday rotation at room temperature. To build such a device an optimization of garnets and OLEDs has to be done. For a good functionality of the device it is essential to maximize the light coupled from the OLED into the waveguide and to seperate s- and p-polarized emitted light. To optimize the OLED emisson numerical simulations have been performed where material and thickness of the metal anode, as well as the thickness of the hole and the electron conducting layers were varied. The stacks with the best separation of s- and p-polarized light and the highest coupling into the waveguide were determined, fabricated, and characterized regarding their electrical and optical properties. OLEDs have to be deposited on plane surfaces for exhibiting low leakage currents and thus being functional. In order to get plane and crack free BIG surfaces the garnet growth and surface formation were examined on various gadolinium gallium garnet (GGG) Gd_3 Ga_5 O_(12) and buffered non-garnet substrates. GGG substrates with different cuts and lattice constants were characterized as well as yttrium iron garnet (YIG) Y_3Fe_5O_(12) and GGG buffered sapphire, silicon, and fused silica substrates. The garnet had to be structured to fabricate a planar waveguide. Therefore laser structuring and plasma etching techniques were utilized. The structured garnets were characterized regarding the wall roughness. The optical constants of YIG and BIG were determined from films deposited on silicon using ellipsometric measurements. The combination of microcavity OLED and garnet waveguide resulted in an integrated magnetooptical modulator whose functionality has been proven by applying an external magnetic field and measuring the rotation of the polarized light.
机译:包含微腔有机发光二极管(OLED)和磁光活性铋铁石榴石(BIG)Bi_3Fe_5O_(12)波导的设备将产生偏振光的平面光源与在室温下展现出最高法拉第旋转率的材料结合在一起。为了制造这种设备,必须对石榴石和OLED进行优化。为了使设备具有良好的功能,必须使从OLED耦合到波导中的光最大化,并分离出S偏振和P偏振光。为了优化OLED emisson数值模拟,其中金属阳极的材料和厚度以及空穴和电子导电层的厚度发生了变化。确定,制作和表征具有s偏振光和p偏振光的最佳分离以及到波导的最高耦合的堆栈,并对其电气和光学特性进行表征。 OLED必须沉积在平面表面上,以表现出低泄漏电流并因此起作用。为了获得平坦且无裂纹的BIG表面,在各种g镓石榴石(GGG)Gd_3 Ga_5 O_(12)和缓冲的非石榴石基材上检查了石榴石的生长和表面形成。表征了具有不同切口和晶格常数的GGG衬底以及钇铁石榴石(YIG)Y_3Fe_5O_(12)和GGG缓冲蓝宝石,硅和熔融石英衬底。石榴石必须被构造为制造平面波导。因此,利用了激光结构化和等离子体蚀刻技术。对结构化石榴石的壁粗糙度进行了表征。 YIG和BIG的光学常数是使用椭偏测量从沉积在硅上的薄膜确定的。微腔OLED和石榴石波导的组合产生了集成的磁光调制器,其功能已通过施加外部磁场并测量偏振光的旋转得到了证明。

著录项

  • 来源
    《Physica status solidi》 |2011年第2期|p.264-275|共12页
  • 作者单位

    Institute of Physics, University of Augsburg, 86135 Augsburg, Germany;

    Institute of Physics, University of Augsburg, 86135 Augsburg, Germany;

    Institute of Physics, University of Augsburg, 86135 Augsburg, Germany;

    Institute of Physics, University of Augsburg, 86135 Augsburg, Germany;

    Institute of Physics, University of Augsburg, 86135 Augsburg, Germany;

    Institute of Physics, University of Augsburg, 86135 Augsburg, Germany;

    Institute of Physics, University of Augsburg, 86135 Augsburg, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    devices; garnets; magnetooptical effects; optoelectronics;

    机译:设备;石榴石磁光效应;光电子学;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号