首页> 外文期刊>Physica status solidi >Nano-scale feature analysis achieving high effective lateral resolution with micro-scale material characterization techniques: Application to back-end processing
【24h】

Nano-scale feature analysis achieving high effective lateral resolution with micro-scale material characterization techniques: Application to back-end processing

机译:利用微尺度材料表征技术实现高效横向分辨率的纳米尺度特征分析:在后端处理中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

Achieving higher performances of electronic devices was first realized by decreasing feature size followed by the introduction of new materials and the switch from planar devices to non-planar ones. Unfortunately, many characterization techniques do not reach lateral resolution compatible with device sizes. This is the case for energy dispersive X-ray spectroscopy (EDS). X-ray photoclectron spectroscopy (XPS), Rutherford backseattering spectrometry (RBS). or time of flight) secondary ion mass spectrometry (TOF-)SIMS. This, however, does not render these techniques useless for small size analysis. This is demonstrated in separate examples taken from back-end of line processing. In back-end, trenches to be tilled with metal lines are etched. This process leaves residues on thernsurfaces that need to be cleaned. XPS is an adequate technique to analyze the chemical composition of (remaining) surface components but does not have the resolution needed to investigate single lines. By using periodic structures and a mathematical model, the composition of the top, sidewall and bottom of the trenches can be easily identified. Once formed, these trenches need to be filled with metallic copper. Due to the small size of the lines, the copper filling is prone to voids formation, which has to be avoided. A good estimation of the presence of void can be achieved using EDS while, intrinsically, the lateral resolution is typically significantly worse than the line dimensions.
机译:首先通过减小特征尺寸来实现电子设备的更高性能,然后引入新材料并从平面设备转换为非平面设备。不幸的是,许多表征技术没有达到与器件尺寸兼容的横向分辨率。能量色散X射线光谱仪(EDS)就是这种情况。 X射线光电子分光光度法(XPS),卢瑟福反散射光谱法(RBS)。或飞行时间)二次离子质谱(TOF-)SIMS。但是,这不会使这些技术对小尺寸分析毫无用处。从行处理后端获取的单独示例中对此进行了演示。在后端,蚀刻要用金属线填充的沟槽。该过程在需要清洁的表面上留下残留物。 XPS是一种分析(剩余)表面成分化学成分的适当技术,但没有研究单线所需的分辨率。通过使用周期性结构和数学模型,可以轻松地识别出沟槽顶部,侧壁和底部的成分。一旦形成,这些沟槽就需要填充金属铜。由于线路尺寸小,铜填充容易形成空隙,必须避免。使用EDS可以很好地估计是否存在空隙,而本质上来说,横向分辨率通常比线尺寸差很多。

著录项

  • 来源
    《Physica status solidi》 |2015年第3期|506-511|共6页
  • 作者单位

    MCACSA, IMEC, Kapeldreef 75, 3001 Leuven, Belgium;

    MCACSA, IMEC, Kapeldreef 75, 3001 Leuven, Belgium;

    MCACSA, IMEC, Kapeldreef 75, 3001 Leuven, Belgium,Department of Physics and Astronomy, KULeuven, Celestijnenlaan 200D-bus 2418, 3001 Leuven, Belgium;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    EDS; nanoscale; photoemission; XPS;

    机译:EDS;纳米级光发射XPS;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号