首页> 外文期刊>Photovoltaics, IEEE Journal of >Optical Monitoring and Control of Three-Stage Coevaporated Cu(In $_{bm {1-x}}$Ga$_{bm x}$)Se $_{bf 2}$ by Real-Time Spectroscopic Ellipsometry
【24h】

Optical Monitoring and Control of Three-Stage Coevaporated Cu(In $_{bm {1-x}}$Ga$_{bm x}$)Se $_{bf 2}$ by Real-Time Spectroscopic Ellipsometry

机译:实时光谱椭偏仪对三阶段共蒸发Cu(In __ {bm {1-x}} $ Ga $ _ {bm x} $)Se $ _ {bf 2} $的光学监视和控制

获取原文
获取原文并翻译 | 示例
           

摘要

Real-time spectroscopic ellipsometry (RTSE) has been applied for in situ monitoring and control of thin-film copper–indium–gallium–diselenide, i.e., Cu(In $_{1-x}$Ga$_{x}$ )Se$_{2}$ (CIGS), deposition by high vacuum coevaporation in the three-stage process used for efficient photovoltaic devices. Initial studies have been performed on a ∼0.7-μm CIGS layer deposited on crystal silicon to minimize surface roughness and to develop an accurate structural/optical model of the Cu-poor-to-Cu-rich and Cu-rich-to-Cu-poor transitions that define the ends of the second (II) and third (III) stages of growth, respectively. With a better understanding of the surface achieved through this model, correlations can be made between the surface state and the unprocessed RTSE data { ${psi}(t)$, ${Delta}(t)$}. During deposition in the solar cell configuration with 2-μm-thick CIGS on a Mo-coated glass substrate, indications of the Cu poor-to-rich and Cu rich-to-poor transitions appear clearly in {${psi}(t)$ , ${Delta}(t)$}, enabling direct control of stage II and III transitions. The transition times deduced optically are in good agreement with those identified from the film/substrate emissivity by tracking the substrate heater power. It is clear, however, that RTSE can provide higher sensitivity to these transitions and is, therefore, suitable for improved control of three-stage CIGS deposition.
机译:实时光谱椭偏仪(RTSE)已用于原位监测和控制薄膜铜-铟-镓-二硒化物(Cu(In $ _ {1-x} $ Ga $ _ {x} $)) Se_ {2} $(CIGS),在高效光电器件的三阶段工艺中通过高真空共蒸发进行沉积。已经对沉积在晶体硅上的约0.7μmCIGS层进行了初步研究,以最大程度地减少表面粗糙度并建立贫铜到富铜和富铜到铜的精确结构/光学模型。较差的过渡分别定义了增长的第二(II)和第三(III)阶段的结束。通过此模型可以更好地了解表面,可以在表面状态和未处理的RTSE数据{$ {psi}(t)$,$ {Delta}(t)$}之间建立关联。在厚度为2μm的CIGS的太阳能电池配置中,在镀Mo的玻璃基板上沉积期间,在{$ {psi}(t)中清楚地显示出Cu贫富转变和Cu富贫转变的迹象。 $,$ {Delta}(t)$},从​​而可以直接控制第二和第三阶段的转换。通过光学推导的跃迁时间与通过跟踪基板加热器功率从薄膜/基板发射率确定的跃迁时间非常吻合。然而,很明显,RTSE可以对这些转变提供更高的灵敏度,因此适合于改善三阶段CIGS沉积的控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号