首页> 外文期刊>Petroleum Geoscience >Flow processes and pressure evolution in aquifers during the injection of supercritical CO2 as a greenhouse gas mitigation measure
【24h】

Flow processes and pressure evolution in aquifers during the injection of supercritical CO2 as a greenhouse gas mitigation measure

机译:作为温室气体减排措施的超临界二氧化碳注入过程中含水层的流动过程和压力演变

获取原文
获取原文并翻译 | 示例
           

摘要

Regional saline aquifers offer the greatest potential for very large-scale underground CO2 storage as a means of mitigating greenhouse gas emissions. Their dynamic storage capacity, in terms of induced increases in formation pressure, will limit the rate at which CO2 can be injected and may ultimately limit the amount of CO2 that can be stored. Generic flow models were generated to examine the effects on pressure evolution of various reservoir parameters (dimensions, permeability, porosity, presence and nature of flow barriers). CO2 injection involves dominantly hydrogeological (single-phase flow) processes in much of the reservoir and surrounding adjacent strata, with additional two-phase flow effects around the CO2 plume itself. Large, thick aquifers with no significant flow barriers can accept high injection rates (c. 10 million tonnes of CO2 per year) without undue pressure effects. However, flow barriers, such as faults, increase induced pressures considerably; for reservoirs with such features, careful site characterization and operational planning will be required for large storage projects. The principles established from the generic modelling were applied to a real aquifer storage operation at Sleipner in the North Sea. Here, CO2 is being injected into the Utsira Sand, a large relatively homogeneous reservoir. Modelling indicates that pressure increase should be negligible. In fact, observed wellhead pressures do show a small rise, but this can be attributed to temperature changes in the fluid column in the wellbore. Pressure changes in the reservoir are likely to be very small.
机译:区域性生理盐水层为缓解大型温室气体排放提供了极大的潜力,可用于非常大规模的地下CO 2 地下存储。在诱导地层压力增加的条件下,它们的动态储存能力将限制 CO 2 的注入速度,并最终可能限制 可以存储的CO 2 的数量。生成通用流模型,以研究各种储层参数(尺寸,渗透率,孔隙度,存在性和流动屏障的性质)对压力演化的影响。 )。 CO 2 注入主要涉及 储层和周围地层中大部分的 水文地质(单相流)过程,另外还有两相< sup> 围绕CO 2 羽本身的流动效应。没有明显的流动障碍的大而厚的含水层 可以接受高注入速率(每年约1000万吨CO 2 )而没有不适当的压力 效果。但是,诸如故障之类的流动障碍会大大增加感应压力。对于具有这种特征的水库,对于大型存储项目,需要仔细的 现场表征和操作计划。从 通用模型建立的原理应用于北海Sleipner的实际含水层存储 操作。在这里,将CO 2 注入 到一个较大的相对均质的储层Utsira砂中。 建模表明压力增加应该可以忽略不计。 > 实际上,观察到的井口压力确实显示出小幅上升,但这 可以归因于井眼中流体柱 的温度变化。储层中的压力变化可能 非常小。

著录项

  • 来源
    《Petroleum Geoscience》 |2009年第1期|59-73|共15页
  • 作者单位

    British Geological Survey, Kingsley Dunham Centre , Keyworth, Nottingham NG 12 5GG, UK;

    British Geological Survey, Kingsley Dunham Centre , Keyworth, Nottingham NG 12 5GG, UK;

    British Geological Survey, Kingsley Dunham Centre , Keyworth, Nottingham NG 12 5GG, UK;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号