首页> 外文期刊>Permafrost and Periglacial Processes >Influences of Frozen Ground and Climate Change on Hydrological Processes in an Alpine Watershed: A Case Study in the Upstream Area of the Hei'he River, Northwest China
【24h】

Influences of Frozen Ground and Climate Change on Hydrological Processes in an Alpine Watershed: A Case Study in the Upstream Area of the Hei'he River, Northwest China

机译:高寒流域冻土和气候变化对水文过程的影响-以中国西北黑河上游地区为例

获取原文
获取原文并翻译 | 示例
           

摘要

In cold regions, the occurrence of frozen ground has a fundamental control over the character of the water cycle. To investigate the impact of changing ground temperature conditions on hydrological processes in the context of climate change, a distributed hydrological model with an explicit frozen ground module was applied to an alpine watershed in the upstream area of the Hei'he River in the Qilian Mountains, northwest China. After evaluating the base model, we considered scenarios of frost-free ground and climate change. Results showed that the base model with a frozen ground module successfully captured the water balance and thermal regimes in the basin. When the frozen ground module was turned off, the simulated groundwater recharge and base flow increased by a factor of two to three because surface runoff caused by exceeding infiltration capacities at high elevations, which occurred in the base model, was eliminated. Consequently, the river hydrograph became smoother and flatter, with summer flood peaks delayed and reduced in volume. The annual mean depth where subsurface runoff was generated, was about 2.4m compared to 1.1m in the base model. For a warming climate, a combination of increasing evapotranspiration and reducing permafrost area results in smoother and flatter hydrographs, and a reduction in total river discharge. Although our analysis using numerical models has its limitations, it still provides new quantitative understanding of the influences of frozen ground and climate change on hydrological processes in an alpine watershed. Copyright (c) 2016 John Wiley & Sons, Ltd.
机译:在寒冷地区,冻土的发生对水循环的特征具有根本的控制作用。为了研究气候变化背景下地面温度条件的变化对水文过程的影响,在祁连山黑河上游地区的高山流域上,采用了具有显式冻结地面模块的分布式水文模型,中国西北。在评估了基本模型之后,我们考虑了无霜地面和气候变化的情景。结果表明,具有冻结地面模块的基本模型成功捕获了盆地中的水平衡和热态。当冻结的地面模块关闭时,模拟的地下水补给和基本流量增加了2到3倍,这是因为消除了基本模型中因高海拔条件下超过入渗能力而引起的地表径流。因此,河流水文变得更加平坦和平坦,夏季洪水高峰被延迟并减少了流量。产生地下径流的年平均深度约为2.4m,而基础模型的年平均深度为1.1m。对于气候变暖,蒸散量增加和永久冻土面积减小的共同作用是使水位曲线更平滑和更平坦,并减少了总河流量。尽管我们使用数值模型进行的分析有其局限性,但它仍然提供了新的定量认识,即对冻土和气候变化对高山流域水文过程的影响。版权所有(c)2016 John Wiley&Sons,Ltd.

著录项

  • 来源
    《Permafrost and Periglacial Processes》 |2017年第2期|420-432|共13页
  • 作者单位

    Hunan Univ Sci & Technol, Natl Local Joint Engn Lab Geospatial Informat Tec, Xiangtan 411201, Hunan, Peoples R China;

    Chinese Acad Sci, Cold & Arid Reg Environm & Engn Res Inst, State Key Lab Frozen Soils Engn, Lanzhou, Gansu, Peoples R China;

    Chinese Acad Sci, Cold & Arid Reg Environm & Engn Res Inst, State Key Lab Frozen Soils Engn, Lanzhou, Gansu, Peoples R China;

    Chinese Acad Sci, Cold & Arid Reg Environm & Engn Res Inst, State Key Lab Frozen Soils Engn, Lanzhou, Gansu, Peoples R China;

    Tsinghua Univ, Dept Hydraul Engn, State Key Lab Hydrosci & Engn, Beijing, Peoples R China;

    ARS, USDA, Northwest Watershed Res Ctr, Boise, ID USA;

    Hunan Univ Sci & Technol, Natl Local Joint Engn Lab Geospatial Informat Tec, Xiangtan 411201, Hunan, Peoples R China|Chinese Acad Sci, Cold & Arid Reg Environm & Engn Res Inst, State Key Lab Frozen Soils Engn, Lanzhou, Gansu, Peoples R China;

    Wageningen Univ & Res, Dept Environm Sci, Hydrol & Quantitat Water Management Grp, Wageningen, Netherlands;

    Chinese Acad Sci, Cold & Arid Reg Environm & Engn Res Inst, State Key Lab Frozen Soils Engn, Lanzhou, Gansu, Peoples R China;

    Hunan Univ Sci & Technol, Natl Local Joint Engn Lab Geospatial Informat Tec, Xiangtan 411201, Hunan, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    distributed hydrological model; frozen ground; cold regions; climate change; Hei'he River basin;

    机译:分布式水文模型冻土寒冷地区气候变化黑河流域;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号