...
首页> 外文期刊>Optics and Lasers in Engineering >In situ scanning electron microscopy-based high-temperature deformation measurement of nickel-based single crystal superalloy up to 800 ℃
【24h】

In situ scanning electron microscopy-based high-temperature deformation measurement of nickel-based single crystal superalloy up to 800 ℃

机译:基于原位扫描电子显微镜的镍基单晶高温合金高达800℃的高温变形测量

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In situ observation and measurement of high-temperature deformation of hot-section materials in scanning environments is helpful in understanding the microscopic failure and fracture mechanisms of these materials and estimating their safe life cycles. However, in situ high-temperature measurements in a scanning electron microscopy (SEM) environment pose major challenges in high-efficiency heat source design, establishment of stable high contrast microscopic images, and quantitative measurement of the deformation fields in the high-temperature environment. New methods and approaches must be therefore developed for quantitative measurement of these high-temperature mechanical properties. This article reports use of in situ SEM to measure the high-temperature deformation and fatigue properties of a nickel-based single crystal superalloy (NBSCS) up to 800 degrees C. A conductive heating source has been constructed based on numerical calculations of the thermal field inside the SEM chamber and analysis of the secondary electron spectrum and thermionic emissions received by the detector. Al2O3 nano-scale particles were coated on the NBSCS surfaces and were used to form speckle patterns to measure the deformation of NBSCS from room temperature up to 800 degrees C via a digital image correlation technique. The stable spatial geometric configuration and enhanced interfacial strength between the Al2O3 particles and the sample surface with increasing temperature validate the developed high-temperature speckle patterns. Tensile and fatigue experiments are performed for NBSCS samples using the developed system. Full-field displacements are obtained near the notch root and in situ fatigue crack propagation is reported in the temperature range from 600 degrees C to 800 degrees C.
机译:在扫描环境中对热截面材料的高温变形进行原位观察和测量有助于了解这些材料的微观破坏和断裂机理,并估计其安全寿命。但是,在扫描电子显微镜(SEM)环境中进行原位高温测量对高效热源设计,建立稳定的高对比度显微图像以及对高温环境中的变形场进行定量测量提出了重大挑战。因此必须开发新的方法和方法来定量测量这些高温机械性能。本文报道了使用原位SEM测量高达800摄氏度的镍基单晶高温合金(NBSCS)的高温变形和疲劳性能。已经基于热场的数值计算构造了导电加热源在SEM室内部并分析检测器接收到的二次电子光谱和热电子发射。将Al2O3纳米级颗粒涂覆在NBSCS表面上,并通过数字图像相关技术用于形成斑点图案,以测量NBSCS从室温到800摄氏度的变形。随着温度升高,Al2O3颗粒与样品表面之间稳定的空间几何构型和增强的界面强度证实了所开发的高温斑点图案。使用开发的系统对NBSCS样品进行了拉伸和疲劳实验。在凹口根部附近获得了全场位移,并且据报道在600摄氏度至800摄氏度的温度范围内发生了疲劳裂纹的原位扩展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号