...
首页> 外文期刊>Optical and quantum electronics >Simulation and analysis of the performances of a thin plasmonic-based perovskite absorber by subtracting the parasitic absorption of nano-cylinders
【24h】

Simulation and analysis of the performances of a thin plasmonic-based perovskite absorber by subtracting the parasitic absorption of nano-cylinders

机译:减去纳米圆柱寄生吸收的薄等离子体基钙钛矿吸收器的模拟与分析

获取原文
获取原文并翻译 | 示例

摘要

Optical design and management are the most important to demonstrate the full potential of thin-film perovskite absorbers. The main goal of this research work is to evaluate the parasitic absorption of nano-particles inside the perovskite absorber. Here, the cylindrical shape nanoparticles are used to manage the incident light inside the perovskite solar cell. Thin-film perovskite absorbers have good absorption in the visible region. Since the small size nanoparticles scatter incident light in the forward direction, so using them on the top side is beneficial. For the rear side, large nanoparticles are used because they scatter in the backward direction. It is showed that the use of nanoparticles in the top side has a weak effect on absorption. So, we used nano-cylinders on the rear side to promote the optical response in the near-infrared region. Comprehensive finite-difference time-domain simulations are done to design optimized nanostructures. It is investigated that optical absorption inside the nano-cylinders occurs at the near-infrared. The parasitic absorption of them was subtracted from total absorption to identify the net absorption of the perovskite layer. For instance, for a 200 nm absorber, the photocurrent is increased from 17.71 mA/cm~2 (without nanoparticle) to 19.67 mA/cm~2. Also, it is investigated that the absorption inside the Al nanoparticles is less than Ag nanoparticles. The founding of this work is helpful to design and produce a thin-film perovskite solar cell.
机译:光学设计和管理是展示薄膜Perovskite吸收剂的全部潜力最重要的。该研究工作的主要目的是评估钙钛矿吸收剂内纳米颗粒的寄生体积。这里,圆柱形纳米颗粒用于在钙钛矿太阳能电池内部的入射光。薄膜Perovskite吸收器在可见区域中具有良好的吸收。由于小尺寸的纳米颗粒在向前方向散射入射光,因此在顶部使用它们是有益的。对于后侧,使用大纳米颗粒,因为它们在向后方向上散射。结果表明,纳米颗粒在顶侧的使用对吸收效果薄弱。因此,我们在后侧使用纳米圆筒以促进近红外区域中的光学响应。全面的有限差分时间域模拟来设计优化的纳米结构。研究了纳米圆筒内的光学吸收发生在近红外线。从总吸收中减去它们的寄生吸收以鉴定钙钛矿层的净吸收。例如,对于200nm吸收剂,光电流从17.71mA / cm〜2(无纳米颗粒)增加至19.67mA / cm〜2。而且,研究了Al纳米颗粒内的吸收小于Ag纳米颗粒。这项工作的建立有助于设计和生产薄膜佩洛夫斯基钛矿太阳能电池。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号