首页> 外文期刊>Oceanographic Literature Review >The compressible granular collapse in a fluid as a continuum: validity of a Navier-Stokes model with, -rheology
【24h】

The compressible granular collapse in a fluid as a continuum: validity of a Navier-Stokes model with, -rheology

机译:液体中的可压缩颗粒坍塌作为连续体:Navier-Stokes模型的有效性, - 无论

获取原文
获取原文并翻译 | 示例
           

摘要

The incompressible -rheology has been used to study subaerial granular flows with remarkable success. For subaquatic granular flows, drag between grains and the pore fluid is substantially higher and the physical behaviour is more complex. High drag forces constrain the rearrangement of grains and dilatancy, leading to a considerable buildup of pore pressure. Its transient and dynamic description is the key to modelling subaquatic granular flows but out of the scope of incompressible models. In this work, we advance from the incompressible -rheology to the compressible, -rheology to account for pore pressure, dilatancy and the scaling laws under subaquatic conditions. The model is supplemented with critical state theory to yield the correct properties in the quasi-static limit. The pore fluid is described by an additional set of conservation equations and the interaction with grains is described by a drag model. This new implementation enables us to include most of the physical processes relevant for submerged granular flows in a highly transparent manner. Both the incompressible and compressible rheologies are implemented into OpenFOAM, and various simulations at low and high Stokes numbers are conducted with both frameworks. We found a good agreement of the, -rheology with low-Stokes-number experiments, which incompressible models fail to describe. The combination of granular rheology, pore pressure and drag model leads to complex phenomena such as apparent cohesion, remoulding, hydroplaning and turbidity currents. The simulations give remarkable insights into these phenomena and increase our understanding of subaquatic mass transports.
机译:不可压缩的 - 一体化学已经用于研究具有显着成功的子系统颗粒流。对于颗粒状流动,晶粒和孔隙流体之间的拖动基本上高,物理行为更复杂。高压强制约束谷物和膨胀的重排,导致孔隙压力的相当大堆积。它的瞬态和动态描述是建模音颗粒流量的关键,但是不可提供的模型范围。在这项工作中,我们从不可压缩的 - 压缩,-Rheology推出到可压缩, - 在胎管条件下考虑孔隙压力,膨胀性和缩放法。该模型补充了临界状态理论,以产生准静态极限的正确特性。孔流体由另外的保护方程描述,并且通过拖动模型描述与晶粒的相互作用。这种新实现使我们能够以高度透明的方式包括与浸没的粒度流相关的大多数物理过程。不可压缩和可压缩的流变术都实施在OpenFoam中,并且在低和高斯托克号数字中的各种模拟与两个框架进行。我们发现了与低斯托克斯数实验的良好一致性的,不可压缩的模型未能描述。粒状流变学,孔隙压力和拖曳模型的组合导致复杂的现象,如表观内聚力,重新粘合,水镀,浊度和浊度。仿真对这些现象具有显着的见解,并提高了我们对眶下传输的理解。

著录项

  • 来源
    《Oceanographic Literature Review》 |2021年第5期|1169-1169|共1页
  • 作者

  • 作者单位
  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号