...
首页> 外文期刊>Oceanographic Literature Review >Effects of St and Re on propulsive performance of bionic oscillating caudal fin
【24h】

Effects of St and Re on propulsive performance of bionic oscillating caudal fin

机译:ST和RE对仿生振荡尾鳍推进性能的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Many fishes show an excellent swimming ability by agilely oscillating their fins, and the caudal fin is a main organ for a fish to propel itself. This propulsion mode provides inspiration to the design of biomimetic underwater vehicles. On this basis, we take an oscillating fin as our study subject and build a computational fluid dynamic model by mimicking the lunate caudal fin of tuna. Numerical simulations are performed to evaluate the effects of the Strouhal number (St) and Reynold number (Re) on the wake structure and hydrodynamic performance of the oscillating caudal fin. Navier-Stokes equations are used to solve the unsteady flow for the oscillating caudal fin, as well as the user-defined-function and dynamic mesh methods are applied to realize and track the instant locomotion, respectively. Then the validity and reliability of the numerical method are verified by experiments and convergence tests. Results show that the fish can obtain a larger instantaneous thrust force when the caudal fin flaps under a higher St but when its propulsive efficiency is mediocre or even worsens. This situation usually occurs during the escape or hunting actions of fish. Meanwhile, being in a turbulence flow, which corresponds to a larger Re, is helpful for the caudal fin to obtain a relatively higher thrust force and propulsive efficiency. Specially, a detailed analysis on the connection between the wake vortex topology, kinematics and force generation of the caudal fin is performed. Results suggests that the wake is dominated by one or two sets of complex vortex rings which convect at different oblique angles to the wake flow centerline. With various Re and St, the hydrodynamic performances of the caudal fin strongly depend on the flow dynamics underlying the force production, including the orientation, interconnection and dissipation rate of the vortex rings. Such as jet flows inducted by these vortex rings, play a critical role in the thrust force generation for an oscillating caudal fin.
机译:许多鱼类通过拼接翅片呈着优异的游泳能力,尾鳍是用于推动自己的鱼的主器官。这种推进模式为仿生水下车辆设计提供了灵感。在此基础上,我们通过模拟金枪鱼的熊尾鳍来占据振动翅片,并通过模拟熊尾鳍来构建计算流体动态模型。进行数值模拟以评估斯特拉尔数(ST)和雷诺数(RE)对振荡尾鳍的唤醒结构和流体动力学性能的影响。 Navier-Stokes方程用于解决振荡尾鳍的不稳定流,以及应用用户定义的功能和动态网格方法,分别用于实现和跟踪即时运动。然后通过实验和收敛试验验证数值方法的有效性和可靠性。结果表明,当尾部翅片在高于ST之下时,鱼可以获得更大的瞬时推力力,但是当其推进效率是平庸或甚至恶化时。这种情况通常发生在逃避或狩猎鱼的狩猎行动期间。同时,在湍流流中,对应于更大的RE,有助于尾鳍获得相对较高的推力和推进效率。特别是,执行关于尾翼旋转拓扑,运动学和尾部力产生之间的连接之间的详细分析。结果表明,唤醒是由一组或两组复杂的涡旋环导,其在不同的倾斜角度与唤醒流量中心线相反。通过各种RE和ST,尾鳍的流体动力学性能强烈地取决于力量生产下面的流动动态,包括涡旋环的取向,互连和耗散率。例如通过这些涡旋环电流的喷射流,在振荡尾鳍的推力产生中起着关键作用。

著录项

  • 来源
    《Oceanographic Literature Review》 |2020年第10期|2314-2314|共1页
  • 作者

    P. Liu; S. Wang; R. Liu; Z. Shang;

  • 作者单位

    College of Engineering Ocean University of China Qingdao China;

    College of Engineering Ocean University of China Qingdao China;

    College of Engineering Ocean University of China Qingdao China;

    College of Engineering Ocean University of China Qingdao China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号