首页> 外文期刊>IEEE Journal of Oceanic Engineering >Double-Loop Integral Terminal Sliding Mode Tracking Control for UUVs With Adaptive Dynamic Compensation of Uncertainties and Disturbances
【24h】

Double-Loop Integral Terminal Sliding Mode Tracking Control for UUVs With Adaptive Dynamic Compensation of Uncertainties and Disturbances

机译:具有不确定性和扰动自适应动态补偿的UUV双回路整体终端滑模跟踪控制

获取原文
获取原文并翻译 | 示例
           

摘要

This paper focuses on the trajectory tracking control of unmanned underwater vehicles (UUVs) in the presence of dynamic uncertainties and time-varying external disturbances. Two adaptive integral terminal sliding mode control schemes, namely, adaptive integral terminal slidingmode control (AITSMC) scheme and adaptive fast integral terminal sliding mode control (AFITSMC) scheme are proposed for UUVs based on integral terminal sliding mode (ITSM) and fast ITSM (FITSM), respectively. Each control scheme is double-looped: composed of a kinematic controller and a dynamic controller. First, a kinematic controller is designed for each of the two control schemes. The two kinematic controllers are based on ITSM and FITSM, respectively. These kinematic controllers yield local finite-time convergence of the position tracking errors to zero meanwhile avoid the singularity problem in the conventional terminal sliding mode control (TSMC). Then, using the output of the kinematic controller as a reference velocity command, a dynamic controller is developed for each of the two control schemes. The two dynamic controllers are also based on ITSM and FITSM, respectively. An adaptive mechanism is introduced to estimate the unknown parameters of the upper bound of the lumped system uncertainty which consists of dynamic uncertainties and time-varying external disturbances so that the prior knowledge of the upper bound of the lumped system uncertainty is not required. The estimated parameters are then used as controller parameters to eliminate the effects of the lumped system uncertainty. The convergence rate of the integral terminal sliding variable vector is investigated and the local finitetime convergence of the velocity tracking errors to zero in the ITSM or FITSM is obtained. Finally, based on the designed kinematic and dynamic controllers, the finite-time stability of the full closed-loop cascaded system is shown. The two proposed control schemes improve the tracking accuracy over the existing globally finite-time stable tracking control (GFTSTC) and adaptive nonsingular TSMC schemes, and enhance the robustness against parameter uncertainties and external disturbances over the GFTSTC scheme. Compared with the conventional adaptive integral sliding mode control (AISMC) scheme, the two proposed control schemes offer faster convergence rate and stronger robustness against dynamic uncertainties and time-varying external disturbances for the trajectory tracking control of UUVs due to involving the fractional integrator. Comparative numerical simulations are performed on the dynamic model of the Omni Directional Intelligent Navigator UUV for two trajectory tracking cases. The convergence rate and robustness to uncertainties and disturbances are quantified as the convergent time and bounds of the steady-state position and velocity tracking errors, respectively. The results show that the two proposed control schemes improve at least 20s in convergence rate and enhance about 2% robustness in position tracking and 20% robustness in velocity tracking over the AISMC scheme.
机译:本文着重于存在动态不确定性和时变外部干扰的无人水下航行器(UUV)的轨迹跟踪控制。针对基于一体式终端滑模(ITSM)和快速ITSM(FITSM)的UUV,提出了两种自适应一体式终端滑模控制方案,即自适应一体式终端滑模控制(AITSMC)方案和自适应快速一体式终端滑模控制(AFITSMC)方案。 ), 分别。每个控制方案都是双回路的:由运动控制器和动态控制器组成。首先,针对两种控制方案中的每一种设计运动学控制器。这两个运动控制器分别基于ITSM和FITSM。这些运动控制器使位置跟踪误差的局部有限时间收敛到零,同时避免了传统的终端滑模控制(TSMC)中的奇异性问题。然后,使用运动学控制器的输出作为参考速度命令,为两种控制方案中的每一种开发动态控制器。这两个动态控制器也分别基于ITSM和FITSM。引入了一种自适应机制来估计集总系统不确定性上限的未知参数,该参数由动态不确定性和随时间变化的外部干扰组成,因此不需要集总系统不确定性上限的先验知识。然后,将估计的参数用作控制器参数,以消除集总系统不确定性的影响。研究了积分终端滑动变量矢量的收敛速度,获得了ITSM或FITSM中速度跟踪误差为零的局部有限时间收敛。最后,基于设计的运动和动态控制器,显示了全闭环级联系统的有限时间稳定性。提出的两种控制方案提高了现有的全局有限时间稳定跟踪控制(GFTSTC)和自适应非奇异TSMC方案的跟踪精度,并增强了针对参数不确定性和GFTSTC方案的外部干扰的鲁棒性。与传统的自适应积分滑模控制(AISMC)方案相比,这两种控制方案由于涉及分数积分器,在UUV的轨迹跟踪控制中提供了更快的收敛速度和更强的鲁棒性,可抵抗动态不确定性和时变外部干扰。在两个轨迹跟踪情况下,对Omni Directional Intelligent Navigator UUV的动力学模型进行了比较数值模拟。收敛速度和对不确定性和干扰的鲁棒性分别量化为稳态位置和速度跟踪误差的收敛时间和界限。结果表明,与AISMC方案相比,这两种提出的控制方案至少提高了20s的收敛速度,并提高了位置跟踪的2%鲁棒性和速度跟踪的20%鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号