...
首页> 外文期刊>Ocean Dynamics >A note on Stokes production of turbulence kinetic energy in the oceanic mixed layer: observations in the Baltic Sea
【24h】

A note on Stokes production of turbulence kinetic energy in the oceanic mixed layer: observations in the Baltic Sea

机译:关于斯托克斯在海洋混合层中产生湍流动能的记录:在波罗的海的观测

获取原文
获取原文并翻译 | 示例

摘要

Shear- and convection-driven turbulence coexists with wind-generated surface gravity waves in the upper ocean. The turbulent Reynolds stresses in the oceanic mixed layer can therefore interact with the shear of the wave-generated Stokes drift velocity to extract energy from the surface waves and inject it into turbulence, thus augmenting the mean shear-driven turbulence. Stokes production of turbulence kinetic energy (TKE) is difficult to measure in the field, since it requires simultaneous measurement of the turbulent stress and the Stokes drift profiles in the water column. However, it is readily inferred using second moment closure models of the oceanic mixed layer provided: (1) wave properties are available, along with the usual water mass properties, and radiative and air-sea fluxes needed to drive the mixed layer model and (2) the model skill can be assessed by comparing the model results against the observed dissipation rates of TKE. Comprehensive measurements made during the Reynolds 2002 campaign in the Baltic Sea have made the estimation of Stokes production possible, and in this paper, we report on the effort and the conclusions reached. Measurements of air-sea exchange parameters and water mass propertiesrnduring the campaign allowed a mixed layer model to be run and the turbulent stress in the water column to be inferred. Simultaneous wave spectrum measurements enabled Stokes drift profile to be deduced and wave breaking to be included in the model run, and the Stokes production of TKE in the water column estimated. Direct measurements of the TKE dissipation rate from an upward traversing microstructure profiler were used to assure that the model could reproduce the turbulent dissipation rate in the water column. The model results indicate that the Stokes production of TKE in the mixed layer is of the same order of magnitude as the shear production and must therefore be included in mixed layer models.
机译:剪切和对流驱动的湍流与上层海洋中由风产生的表面重力波共存。因此,海洋混合层中的湍流雷诺应力会与波浪产生的斯托克斯漂移速度的切变相互作用,从而从表面波中提取能量并将其注入湍流中,从而增大了平均剪切驱动的湍流。斯托克斯湍流动能(TKE)的产生在现场很难测量,因为它需要同时测量水柱中的湍流应力和斯托克斯漂移曲线。但是,只要提供以下条件,就可以很容易地使用海洋混合层的第二矩闭合模型来推断:(1)具备波浪性质以及通常的水团性质,以及驱动混合层模型所需的辐射通量和空气海通量,以及( 2)可以通过将模型结果与观察到的TKE耗散率进行比较来评估模型技能。雷诺兹2002年在波罗的海的战役期间进行的全面测量使对Stokes产量的估算成为可能,在本文中,我们报告了所做的努力和得出的结论。运动期间对空气-海洋交换参数和水质量特性的测量可以运行混合层模型,并可以推断出水柱中的湍流应力。同时进行的频谱测量可以推算出斯托克斯的漂移曲线,并在模型运行中包括波浪破碎,并估算水柱中TKE的斯托克斯产量。使用向上移动的微结构轮廓仪直接测量TKE耗散率,以确保该模型可以重现水柱中的湍流耗散率。模型结果表明,混合层中TKE的斯托克斯产额与剪切产生量的数量级相同,因此必须包括在混合层模型中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号