首页> 外文期刊>Nuclear Technology >Two-Dimensional Axisymmetric Thermostructural Analysis of APR1400 Reactor Vessel Lower Head for Full-Core Meltdown Accident
【24h】

Two-Dimensional Axisymmetric Thermostructural Analysis of APR1400 Reactor Vessel Lower Head for Full-Core Meltdown Accident

机译:APR1400反应堆容器下缸盖全轴熔化事故的二维轴对称热分析

获取原文
获取原文并翻译 | 示例
       

摘要

In severe accident conditions, the molten core material forms an internally heated debris bed and eventually becomes a molten pool of corium, which will cause or induce thermal and mechanical loads to the reactor vessel lower head (RVLH) resulting in penetrations leading to failure. A good understanding of the mechanical behavior of the RVLH is essential for estimating structural integrity and improving accident mitigation strategies. Coupled thennomechanical analysis using ANSYS, a general-purpose finite element method analysis code, was used to evaluate the possibility and timescale of failure. A two-dimensional axisymmetric finite element model was adopted based on APR1400 design data with relevant material properties including creep data. From the study, it was found that the possibility of plastic and creep failure of the RVLH for the APR 1400 was considerably low for a full-core meltdown of the reactor core under ex-vessel cooling conditions with an ambient temperature of 130℃ and constant decay heat from the corium, but the lower head may fail unless the increased internal pressure can be reduced on time. Plastic failure can be a major cause of lower head failure of a reactor vessel in high internal pressure conditions and creep failure is not negligible, since failure mechanisms under long-lasting periods are considered. This study found that the APR1400 RVLH failure time is around 220 h using 15% creep strain failure criteria from the postulated accident condition.
机译:在严重的事故情况下,熔融的堆芯材料会形成内部加热的碎屑床,并最终变成熔融的皮质液池,这将对反应堆容器下部头部(RVLH)产生或引起热负荷和机械负荷,从而导致穿透,从而导致失效。充分了解RVLH的机械性能对于估算结构完整性和改善事故缓解策略至关重要。使用通用有限元方法分析代码ANSYS进行的耦合力学分析,用于评估故障的可能性和时间尺度。基于APR1400设计数据,采用二维轴对称有限元模型,并具有相关的材料特性,包括蠕变数据。通过研究,发现在环境温度为130℃且恒定的容器外冷却条件下,对于反应堆堆芯的全堆芯熔化,APR 1400的RVLH塑性和蠕变破坏的可能性非常低会衰减来自皮质的热量,但下头可能会失效,除非可以及时降低内部压力升高。塑性破坏可能是在高内部压力条件下反应堆容器的头部损失较低的主要原因,并且蠕变破坏也不能忽略不计,因为考虑了长期持续的破坏机制。这项研究发现,根据假设的事故情况,使用15%蠕变应变失效标准,APR1400 RVLH的失效时间约为220 h。

著录项

  • 来源
    《Nuclear Technology》 |2016年第1期|15-28|共14页
  • 作者

    Hyo-Nam Kim; Ihn Namgung;

  • 作者单位

    Daewoo Engineering and Construction Co. Ltd., Daewoo E&C 75, Saemunan-ro, Jongno-gu, Seoul 110-713, Republic of Korea;

    KEPCO International Nuclear Graduate School, 658-91, Haemaji-ro, Seosaeng-mywon, Ulju-gun, Ulsan 689-882, Republic of Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Reactor vessel lower head; APR 1400; severe accident analysis;

    机译:反应容器下部头;1400年4月;严重事故分析;
  • 入库时间 2022-08-18 00:42:47

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号