首页> 外文期刊>Nuclear Engineering and Design >Investigation of the pressure vessel lower head potential failure under IVR-ERVC condition during a severe accident scenario in APR1400 reactors
【24h】

Investigation of the pressure vessel lower head potential failure under IVR-ERVC condition during a severe accident scenario in APR1400 reactors

机译:4月反应堆严重事故情景期间IVR-ERVC条件下压力容器降低头部电位故障的调查

获取原文
获取原文并翻译 | 示例
           

摘要

In the event of a core meltdown in a high-power reactor, the integrity of the reactor pressure vessel is presumably protected by severe accident mitigation systems such as in-vessel retention external reactor vessel cooling (IVRERVC). However, in the late phase of the accident, two possible locations on the RPV are prone to failure: the location of the focusing effect and location of in-core instrument penetration. These two potential points of damage in the RPV are investigated in this study. A numerical model for the prediction of the natural convection, melting, and solidification processes for IVR-ERVC is presented. The model is based on the enthalpy-porosity approach with an extension for continuous liquid fraction function. The model is implemented in open-source field operation and manipulation (OpenFOAM) computational fluid dynamic code to produce a new solver which is based on the combination of conjugate heat transfer solver and buoyant-driven natural convection solver and the new solver is validated against the melting Gallium experimental test, in-core instrumentation failure experimental test, and BALI experimental test. This numerical model is applied for the investigation of the RPV rupture at the location of the focusing effect and in-core instrumentation penetrations. Severe ablations of the cladding and the weld materials are observed at a heat load of about similar to 1800 K which is expected to lead to the ejection of the penetration tubes if the force holding the penetration tube in place is lower than the force exerted by the system pressure. Subsequently, a two-layer IVR configuration is assessed and the integrity of the RPV is found not to be compromised under external reactor vessel cooling. However, in the case of a boiling crisis, the temperature of the ex-vessel wall is expected to rise quickly and this is simulated by increasing the exvessel wall temperature. The RPV is found to fail near the beltline due to a phenomenon known as focusing effect when the ex-vessel wall temperature rises above 1200 K.
机译:在高功率反应器中的核心熔化的情况下,可以通过严重事故减缓系统(例如血管保留外部反应器血管冷却(IVRERVC)的严重事故缓解系统保护的完整性。然而,在事故的后期阶段,RPV上的两位可能的位置容易发生故障:聚焦效应的位置和核心仪器渗透的位置。在本研究中调查了RPV中的这两个潜在的损伤点。提出了一种用于预测IVR-ERVC的自然对流,熔化和凝固方法的数值模型。该模型基于焓 - 孔隙率接近连续液体分数函数的延伸。该模型在开源现场操作和操作(OpenFoam)计算流体动力学代码中实现,以产生基于共轭传热求解器和浮力驱动的自然对流求解器的组合的新求解器,并且验证了新的求解器熔融镓实验试验,内核仪表失效实验试验和巴厘岛实验试验。该数值模型应用于对聚焦效果和核心仪表渗透的位置的RPV破裂的调查。在近似类似的热负荷的热负荷下观察到包层和焊接材料的严重消融,这预计如果保持穿透管到位的力低于所施加的力,则预期导致穿透管的喷射。系统压力。随后,评估双层IVR构型,发现RPV的完整性在外部反应器血管冷却下不损害。然而,在沸腾的危机的情况下,预计出血管壁的温度会很快上升,通过增加exvessel壁温来模拟这一点。由于当前血管壁温升高到1200k时,RPV发现RPV在背板附近失败。

著录项

  • 来源
    《Nuclear Engineering and Design》 |2021年第5期|111107.1-111107.18|共18页
  • 作者单位

    Khalifa Univ Sci & Technol KU Emirates Nucl Technol Ctr Nucl Engn Dept POB 127788 Abu Dhabi U Arab Emirates;

    Khalifa Univ Sci & Technol KU Emirates Nucl Technol Ctr Nucl Engn Dept POB 127788 Abu Dhabi U Arab Emirates;

    Korea Adv Inst Sci & Technol KAIST 291 Daehak Ro Seoul South Korea;

    Korea Adv Inst Sci & Technol KAIST 291 Daehak Ro Seoul South Korea;

    Korea Adv Inst Sci & Technol KAIST 291 Daehak Ro Seoul South Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Melting; Severe accident; Enthalpy-porosity method; Corium;

    机译:融化;严重事故;焓 - 孔隙度法;脊髓;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号