首页> 外文期刊>Nuclear science and engineering >Analysis of Reactivity Coefficients of Hydride-Fueled PWR Cores
【24h】

Analysis of Reactivity Coefficients of Hydride-Fueled PWR Cores

机译:氢化油压水堆芯的反应系数分析

获取原文
获取原文并翻译 | 示例
       

摘要

A thorough investigation was performed to understand the physics behind the calculated trends in the reactivity coefficients of hydride-fueled pressurized water reactor cores. A two-step procedure was developed for this purpose: ranking the contribution to a reactivity coefficient of each of the system's constituents; investigating, for each of the more important constituents, the spectral reasons for their specific response to the temperature perturbation. This procedure was applied to understand (a) the difference in the be ginning-of-life and end-of-life fuel temperature coefficient of reactivity (FTC) behavior of hydride- as compared to oxide-fueled cores; (b) the different effect integral fuel burnable absorber (IFBA) and erbium burnable poisons have on the FTC and coolant temperature coefficient of reactivity (CTC); (c) the effects on the FTC and CTC of inclusion of thorium hydride in the fuel; (d) the effects of plutonium on the FTC and CTC in hydride- as compared to oxide-fueled cores.rnIt is found that the physics characteristics of hydride-fueled cores are fundamentally different from those of oxide-fueled cores as particularly manifested by the behavior of the FTC. In oxide-fueled cores the main phenomenon affecting the FTC is the well-known Doppler broadening of the fuel resonances. Hydride cores feature an additional unique phenomenon of spectral shift in the thermal energy range; it is the result of upscattering of the thermal neutrons due to the increase in the fuel hydrogen temperature. The interplay between the spectral shift and the shape of the low-energy cross sections of the fuel isotopes is responsible for the sometimes very different values of the calculated FTC for hydride- versus oxide-fueled cores and even for the same fuel type at different burnups. It is also concluded that fissile plutonium can have different effects on the FTC and, although the physics phenomena are quite different, on the CTC in hydride-fueled cores. If the plutonium is present in sufficiently large quantities, its effect can be negative, while if it is present in relatively small quantities, it is more likely to give a positive contribution. An additional finding is that the buildup of ~(135)Xe makes the FTC less positive in hydride-fueled cores, while it has little effect on the FTC of oxide-fueled cores. Also concluded is that thorium-containing hydride fuel cores feature a smaller FTC than that of oxide-fueled cores. This is due to a harder neutron spectrum in the Th-containing hydride-fueled cores leading to a smaller spectral shift, combined with the buildup of ~(233)U the contribution to the FTC of which in hydride-fueled cores is mostly negative.rnThe insight gained through the analyses reported in this work facilitated the identification of an optimal, safe uranium-based hydride-fueled core design; it consists of U-ZrH_(1.6) fuel in which 25% (volumetric) of the ZrH_(1.6) is replaced by ThH_2- Burnable poisons have to be used to compensate part of the excess reactivity; IFBA is the preferred choice.
机译:进行了彻底的研究,以了解氢化物加压水反应堆堆芯反应系数的计算趋势背后的物理原理。为此,开发了一个分两步的过程:对每个系统成分对反应系数的贡献进行排名;对于每个更重要的成分,研究其对温度扰动的特定响应的频谱原因。应用此程序是为了了解(a)与氧化物燃料堆芯相比,氢化物燃料的寿命开始和寿命终止燃料反应温度系数(FTC)行为的差异; (b)整体燃料可燃吸收剂(IFBA)和可燃毒物对FTC和冷却剂反应温度系数(CTC)的影响不同; (c)燃料中包含氢化th对FTC和CTC的影响; (d)oxide与氧化物燃料堆芯相比,on对氢化物中的FTC和CTC的影响.rn发现氢化物燃料堆芯的物理特性与氧化物燃料堆芯的物理特性从根本上不同,这特别体现在: FTC的行为。在氧化物燃料堆芯中,影响FTC的主要现象是众所周知的燃料共振多普勒展宽。氢化物磁芯在热能范围内还具有独特的光谱偏移现象。这是由于燃料氢温度升高导致热中子向上散射的结果。燃料同位素的低能截面的光谱位移和形状之间的相互作用是氢化物燃料芯和氧化物燃料芯的计算出的FTC值有时差异很大的原因,甚至对于不同燃耗情况下的相同燃料类型也是如此。还得出结论,裂变p对FTC的影响可能不同,尽管物理现象差异很大,但对氢化物燃料堆芯的CTC的影响却不同。如果the的存在量足够大,则其作用可能是负面的,而如果relatively的存在量相对较小,则它可能会起到积极的作用。另一个发现是〜(135)Xe的积聚使FTC在氢化物燃料芯中的阳性度降低,而对氧化物燃料芯的FTC影响很小。还得出的结论是,含th的氢化物燃料芯比氧化物燃料的芯具有更小的FTC。这是由于含the的氢化物燃料堆芯中的中子光谱较硬,导致较小的光谱偏移,以及〜(233)U的积累,对含氢化物燃料的堆芯中FTC的贡献大部分为负。通过这项工作中报告的分析获得的见识有助于确定最佳,安全的基于铀的氢化物为燃料的岩心设计;它由U-ZrH_(1.6)燃料组成,其中25%(体积)的ZrH_(1.6)被ThH_2取代-必须使用可燃毒物来补偿部分过量反应性; IFBA是首选。

著录项

  • 来源
    《Nuclear science and engineering》 |2010年第1期|1-32|共32页
  • 作者单位

    University of California, Etcheverry Hall Department of Nuclear Engineering Berkeley, California 94720;

    University of California, Etcheverry Hall Department of Nuclear Engineering Berkeley, California 94720;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:43:41

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号