首页> 外文期刊>Nuclear science and engineering >Alternative Adjoint Boltzmann Transport Operators in Alternative Hilbert Spaces in Spherical Geometry: Theory and Paradigm Applications
【24h】

Alternative Adjoint Boltzmann Transport Operators in Alternative Hilbert Spaces in Spherical Geometry: Theory and Paradigm Applications

机译:球面几何中替代希尔伯特空间中的替代伴随玻尔兹曼输运算子:理论和范例应用

获取原文
获取原文并翻译 | 示例
           

摘要

The solution of the customary adjoint Boltzmann equation for linear transport of particles and radiation, referred to as the "adjoint flux," plays a prominent role in reactor physics, shielding, control, and optimization as a weighting function for cross-section processing, optimization, Monte Carlo acceleration procedures, and sensitivity and uncertainty analyses. All of the textbooks and scientific works published thus far use the same procedure to derive "the" adjoint Boltzmann operator, thereby conveying inadvertently the misleading impression that this traditional procedure is the only way to obtain "the" adjoint Boltzmann operator, and that the form of "the" adjoint operator thus derived is universally unique. None of the works published in the literature thus far touches on the fact that the customary textbook-form of the adjoint Boltzmann operator is actually derived in a particular Hilbert space, which is endowed with a specific inner product that is based on integrating spatially over the domain's spatial volume such that Gauss' divergence theorem holds. As this work will show, however, the Hilbert space that has been implicitly used in all of the published works thus far is not the only possible Hilbert space for deriving operators that are adjoint, in the respective Hilbert space, to the forward Boltzmann operator. Alternative Hilbert spaces may be used just as legitimately, and may actually be more suitable than the customary Hilbert space for computing adjoint functions to be used in inner products involving various forward and/or adjoint fluxes and forward and/or adjoint source terms.By presenting paradigm illustrative examples in three-dimensional spherical coordinates, this work shows that although a unique form of the adjoint Boltzmann operator is obtained for each Hilbert space in which the respective adjoint operator is constructed, distinct Hilbert spaces will produce distinct adjoint Boltzmann operators accompanied by distinct forms of the corresponding bilinear concomitants on the respective spatial domain's boundary. The fundamental practical reason for using alternative Hilbert spaces is to obtain alternative adjoint functions and/or Green's functions that may be less singular than the customary adjoint function and/or Green's functions (in the customary Hilbert space) and would consequently be computable numerically. As this work shows, such situations arise when attempting to use the adjoint sensitivity analysis methodology in the conventional Hilbert space for computing sensitivities to cross sections, isotopic number densities, etc., of responses of flux and/or power detectors placed near or at the center of the spherical coordinates. In such sensitivity analysis problems, the singularities of the conventional adjoint Boltzmann equation in the conventional Hilbert space may preclude its use, but the requisite sensitivities can nevertheless be computed efficiently using an alternative adjoint Boltzmann equation in an alternative Hilbert space. The consequences of this powerful breakthrough new concept of using alternative adjoint operators in alternative Hilbert spaces are highlighted by presenting a paradigm benchmark problem that admits a closed-form exact solution. This benchmark problem shows that the customary adjoint equation becomes singular at the sphere's center, so the conventional adjoint flux is therefore noncomputable there, but the alternative adjoint transport equation in a judiciously chosen alternative Hilbert space is everywhere nonsingular and can therefore be used to compute the requisite sensitivities. By indicating the path for using alternative Hilbert spaces, this work opens new conceptual procedures for solving problems that have hitherto been unsolvable in the framework of the conventional adjoint particle transport equation.
机译:用于粒子和辐射线性传输的常规伴随Boltzmann方程的解,称为“伴随通量”,在反应堆物理,屏蔽,控制和优化中作为横截面处理的加权函数起着重要作用。 ,优化,蒙特卡洛加速程序以及灵敏度和不确定性分析。迄今为止,所有已出版的教科书和科学著作都使用相同的过程来推导“ the”伴随的Boltzmann算子,从而无意间传达了一种误导性的印象,即这种传统过程是获得“ the”伴随的Boltzmann算子的唯一方法,并且由此得出的“ the”伴随运算符的形式是普遍唯一的。迄今为止,文献中未发表任何著作都涉及这样一个事实,即伴随的玻耳兹曼算子的惯用教科书形式实际上是在特定的希尔伯特空间中得出的,而希尔伯特空间具有基于空间积分的特定内部乘积。域的空间体积,以使高斯散度定理成立。但是,正如该工作将显示的那样,到目前为止,已在所有已出版作品中隐含使用的希尔伯特空间并不是唯一的可能的希尔伯特空间,用于将在相应希尔伯特空间中与正向玻尔兹曼算子相伴随的算子派生。替代性希尔伯特空间可以正当使用,并且实际上可能比常规希尔伯特空间更适合用于计算要在涉及各种前向和/或伴随通量以及正向和/或伴随源项的内部乘积中使用的伴随函数。在三维球坐标系中的范例说明性示例,这项工作表明,尽管对于构造了相应伴随算子的每个希尔伯特空间,都获得了伴随玻尔兹曼算子的唯一形式,但不同的希尔伯特空间将产生独特的伴随玻尔兹曼算子并伴随着不同的形式的相应双线性伴随物在各自空间域的边界上。使用替代希尔伯特空间的基本实际原因是获得替代伴随函数和/或格林函数,它们可能不如习惯伴随函数和/或格林函数(在习惯希尔伯特空间中)那么奇异,因此可以通过数值计算。如这项工作所示,当试图在常规希尔伯特空间中使用伴随灵敏度分析方法来计算对通量和/或功率检测器响应的横截面,同位素数密度等的敏感度时,会出现这种情况。球坐标的中心。在此类灵敏度分析问题中,常规希尔伯特空间中常规伴随Boltzmann方程的奇异性可能会使其无法使用,但仍可以使用替代希尔伯特空间中的替代伴随Boltzmann方程来有效地计算所需的灵敏度。提出了一个范式基准问题,该问题允许采用封闭形式的精确解,从而突出了在替代希尔伯特空间中使用替代伴随算子的强大突破性新概念的后果。这个基准问题表明惯常的伴随方程在球的中心变得奇异,因此常规的伴随通量在那儿是不可计算的,但是在明智选择的替代希尔伯特空间中的替代伴随输运方程到处都是非奇异的,因此可以用来计算必要的敏感性。通过指出使用替代希尔伯特空间的路径,这项工作为解决迄今为止在常规伴随粒子输运方程式框架中无法解决的问题提供了新的概念程序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号