...
首页> 外文期刊>Nuclear Instruments & Methods in Physics Research >Cryogenic Si detectors for ultra radiation hardness in SLHC environment
【24h】

Cryogenic Si detectors for ultra radiation hardness in SLHC environment

机译:用于SLHC环境中超辐射硬度的低温Si检测器

获取原文
获取原文并翻译 | 示例

摘要

Radiation hardness up to 10~(16)n_(eq)/cm~2 is required in the future HEP experiments for most inner detectors. However, 10~(16)n_(eq)/cm~2 fluence is well beyond the radiation tolerance of even the most advanced semiconductor detectors fabricated by commonly adopted technologies: the carrier trapping will limit the charge collection depth to an effective range of 20-30 μm regardless of depletion depth. Significant improvement of the radiation hardness of silicon sensors has been taken place within RD39. Fortunately the cryogenic tool we have been using provides us a convenient way to solve the detector charge collection efficiency (CCE) problem at SLHC radiation level (10~(16)n_(eq)/cm~2). There are two key approaches in our efforts: (1) use of the charge/current injection to manipulate the detector internal electric field in such a way that it can be depleted at a modest bias voltage at cryogenic temperature range (≤ 230 K); and (2) freezing out of the trapping centers that affects the CCE at cryogenic temperatures lower than that of the LN_2 temperature.rnIn our first approach, we have developed the advanced radiation hard detectors using charge or current injection, the current injected diodes (CID). In a CID, the electric field is controlled by injected current, which is limited by the space charge, yielding a nearly uniform electric field in the detector, independent of the radiation fluence. In our second approach, we have developed models ofrnradiation-induced trapping levels and the physics of their freezing out at cryogenic temperatures. In this approach, we intend to study the trapping effect at temperatures below LN_2 temperature. A freeze-out of trapping can certainly help in the development of ultra-radiation hard Si detectors for SLHC. A detector CCE measurement system using ultra-fast picosecond laser with a He cryostat has been built at CERN. This system can be used to find out the practical cryogenic temperature range that can be used to freeze out the radiation-induced trapping levels, and it is ready for measurements on extremely heavily irradiated silicon detectors. Initial data from this system will be presented.
机译:在未来的大多数内部探测器的HEP实验中,要求辐射硬度达到10〜(16)n_(eq)/ cm〜2。然而,10〜(16)n_(eq)/ cm〜2的注量甚至远远超过采用常用技术制造的最先进的半导体探测器的辐射容限:载流子捕获将把电荷收集深度限制在20的有效范围内-30μm,与耗尽深度无关。 RD39内已大大改善了硅传感器的辐射硬度。幸运的是,我们一直使用的低温工具为我们解决SLHC辐射水平(10〜(16)n_(eq)/ cm〜2)时探测器电荷收集效率(CCE)问题提供了一种便捷的方法。我们的工作有两种主要方法:(1)使用电荷/电流注入来操纵检测器内部电场,以使其可以在低温温度范围(≤230 K)的适度偏置电压下耗尽。 (2)在低于LN_2温度的低温下冻结掉影响CCE的俘获中心。rn在我们的第一种方法中,我们开发了使用电荷或电流注入,电流注入二极管(CID)的先进的辐射硬探测器。 )。在CID中,电场由注入电流控制,注入电流受空间电荷限制,从而在检测器中产生几乎均匀的电场,而与辐射通量无关。在第二种方法中,我们开发了辐射诱导的捕获水平模型及其在低温下冻结的物理原理。在这种方法中,我们打算研究低于LN_2温度的俘获效应。消除陷阱无疑可以帮助开发用于SLHC的超辐射硬质Si检测器。欧洲核子研究组织已经建立了一个检测器CCE测量系统,该系统使用带有He低温恒温器的超快皮秒激光。该系统可用于找出可用于冻结辐射引起的俘获能级的实际低温温度范围,并且它已准备就绪,可用于极度辐射的硅探测器的测量。将显示该系统的初始数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号